Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N
Permanent link
https://hdl.handle.net/10037/24517Date
2022-01-21Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
Fossil benthic foraminifera are used to trace past methane release linked to climate change. However, it is still debated whether isotopic signatures of living foraminifera from methane-charged sediments refect incorporation of methane-derived carbon. A deeper understanding of isotopic signatures of living benthic foraminifera from methane-rich environments will help to improve reconstructions of methane release in the past and better predict the impact of future climate warming on methane seepage. Here, we present isotopic signatures (δ13C and δ18O) of foraminiferal calcite together with biogeochemical data from Arctic seep environments from c. 1200 m water depth, Vestnesa Ridge, 79° N, Fram Strait. Lowest δ13C values were recorded in shells of Melonis barleeanus, − 5.2‰ in live specimens and − 6.5‰ in empty shells, from sediments dominated by aerobic (MOx) and anaerobic oxidation of methane (AOM), respectively. Our data indicate that foraminifera actively incorporate methane-derived carbon when living in sediments with moderate seepage activity, while in sediments with high seepage activity the poisonous sulfdic environment leads to death of the foraminifera and an overgrowth of their empty shells by methane-derived authigenic carbonates. We propose that the incorporation of methane-derived carbon in living foraminifera occurs via feeding on methanotrophic bacteria and/or incorporation of ambient dissolved inorganic carbon.
Publisher
NatureCitation
Melaniuk K, Sztybor K, Treude T, Sommer S, Rasmussen TLR. Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Scientific Reports. 2022;12Metadata
Show full item recordCollections
Copyright 2022 The Author(s)