ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming

Permanent link
https://hdl.handle.net/10037/24842
DOI
https://doi.org/10.1002/joc.6225
Thumbnail
View/Open
article.pdf (11.53Mb)
Published version (PDF)
Date
2019-07-08
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Vihma, Timo; Graversen, Rune; Chen, Linling; Handorf, Dörthe; Skific, Natasa; Francis, Jennifer A.; Tyrrell, Nicholas; Hall, Richard; Hanna, Edward; Uotila, Petteri; Dethloff, Klaus; Karpechko, Alexey Yu.; Björnsson, Halldór; Overland, James E.
Abstract
We investigate factors influencing European winter (DJFM) air temperatures for the period 1979–2015 with the focus on changes during the recent period of rapid Arctic warming (1998–2015). We employ meteorological reanalyses analysed with a combination of correlation analysis, two pattern clustering techniques, and backtrajectory airmass identification. In all five selected European regions, severe cold winter events lasting at least 4 days are significantly correlated with warm Arctic episodes. Relationships during opposite conditions of warm Europe/cold Arctic are also significant. Correlations have become consistently stronger since 1998. Largescale pattern analysis reveals that cold spells are associated with the negative phase of the North Atlantic Oscillation (NAO-) and the positive phase of the Scandinavian (SCA+) pattern, which in turn are correlated with the divergence of dry-static energy transport. Warm European extremes are associated with opposite phases of these patterns and the convergence of latent heat transport. Airmass trajectory analysis is consistent with these findings, as airmasses associated with extreme cold events typically originate over continents, while warm events tend to occur with prevailing maritime airmasses. Despite Arctic-wide warming, significant cooling has occurred in northeastern Europe owing to a decrease in adiabatic subsidence heating in airmasses arriving from the southeast, along with increased occurrence of circulation patterns favouring low temperature advection. These dynamic effects dominated over the increased mean temperature of most circulation patterns. Lagged correlation analysis reveals that SCA- and NAO+ are typically preceded by cold Arctic anomalies during the previous 2–3 months, which may aid seasonal forecasting.
Publisher
Wiley
Citation
Vihma T, Graversen R, Chen L, Handorf D, Skific N, Francis JA, Tyrrell, Hall R, Hanna E, Uotila P, Dethloff K, Karpechko AY, Björnsson H, Overland JE. Effects of the tropospheric large-scale circulation on European winter temperatures during the period of amplified Arctic warming. International Journal of Climatology. 2020;40:509–529
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1062]
Copyright 2019 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)