Use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: an individual-participant-data meta-analysis
Permanent lenke
https://hdl.handle.net/10037/24899Dato
2017-06-13Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Paige, Ellie; Barrett, Jessica; Pennells, Lisa; Sweeting, Michael; Willeit, Peter; Di Angelantonio, Emanuele; Gudnason, Vilmundur; Nordestgaard, Børge G.; Psaty, Bruce M.; Goldbourt, Uri; Best, Lyle G.; Assmann, Gerd; Salonen, Jukka T.; Nietert, Paul J.; Verschuren, W.M. Monique; Brunner, Eric J.; Kronmal, Richard A.; Salomaa, Veikko; Bakker, Stephan J.L.; Dagenais, Gilles R.; Sato, Shinichi; Jansson, Jan-Håkan; Willeit, Johann; Onat, Altan; De La Cámara, Agustin Gómez; Roussel, Ronan; Völzke, Henry; Dankner, Rachel; Tipping, Robert W.; Meade, Tom W.; Donfrancesco, Chiara; Kuller, Lewis H.; Peters, Annette; Gallacher, John; Kromhout, Daan; Iso, Hiroyasu; Knuiman, Matthew; Casiglia, Edoardo; Kavousi, Maryam; Palmieri, Luigi; Sundström, Johan; Davis, Barry R.; Njølstad, Inger; Couper, David; Danesh, John; Thompson, Simon G.; Wood, AngelaSammendrag
The added value of incorporating information from repeated blood pressure and cholesterol measurements to
predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from
the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962–2014) with
more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative
mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (Cindex) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies.
Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index
by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively.
Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95%
CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction.
Forlag
Oxford University PressSitering
Paige, Barrett, Pennells, Sweeting, Willeit P, Di Angelantonio E, Gudnason V, Nordestgaard BG, Psaty BM, Goldbourt U, Best, Assmann G, Salonen JT, Nietert PJ, Verschuren WM, Brunner EJ, Kronmal RA, Salomaa V, Bakker SJ, Dagenais GR, Sato S, Jansson J, Willeit J, Onat A, De La Cámara, Roussel R, Völzke H, Dankner R, Tipping, Meade TW, Donfrancesco C, Kuller LH, Peters A, Gallacher J, Kromhout D, Iso H, Knuiman, Casiglia E, Kavousi M, Palmieri L, Sundström J, Davis BR, Njølstad i, Couper D, Danesh J, Thompson SG, Wood. Use of repeated blood pressure and cholesterol measurements to improve cardiovascular disease risk prediction: an individual-participant-data meta-analysis. American Journal of Epidemiology. 2017;186(8):899-907Metadata
Vis full innførselSamlinger
Copyright 2017 The Author(s)