ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthetic analogs of stryphnusin isolated from the marine sponge Stryphnus fortis inhibit acetylcholinesterase with no effect on muscle function or neuromuscular transmission

Permanent link
https://hdl.handle.net/10037/24983
DOI
https://doi.org/10.1039/c6ob02120d
Thumbnail
View/Open
article.pdf (931.8Kb)
Published version (PDF)
Date
2016-11-09
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Moodie, Lindon; Zuzek, Monika; Frangez, Robert; Andersen, Jeanette hammer; Hansen, Espen; Olsen, Elisabeth Klungerbo; Cergolj, Marija; Sepcic, Kristina; Hanssen, Kine Østnes; Svenson, Johan
Abstract
The marine secondary metabolite stryphnusin (1) was isolated from the boreal sponge Stryphnus fortis, collected off the Norwegian coast. Given its resemblance to other natural acetylcholinesterase antagonists, it was evaluated against electric eel acetylcholinesterase and displayed inhibitory activity. A library of twelve synthetic phenethylamine analogs, 2a–7a and 2b–7b, containing tertiary and quaternary amines respectively were synthesized to investigate the individual structural contributions to the activity. Compound 7b was the strongest competitive inhibitor of both acetylcholinesterase and butyrylcholinesterase with IC50 values of 57 and 20 μM, respectively. This inhibitory activity is one order of magnitude higher than the positive control physostigmine, and is comparable with several other marine acetylcholinesterase inhibitors. The physiological effect of compound 7b on muscle function and neuromuscular transmission was studied and revealed a selective mode of action at the investigated concentration. This data is of importance as the interference of therapeutic acetylcholinesterase inhibitors with neuromuscular transmission can be problematic and lead to unwanted side effects. The current findings also provide additional insights into the structure–activity relationship of both natural and synthetic acetylcholinesterase inhibitors.
Publisher
Royal Society of Chemistry
Citation
Moodie L, Zuzek, Frangez, Andersen Jh, Hansen E, Olsen EK, Cergolj M, Sepcic K, Hanssen KØ, Svenson J. Synthetic analogs of stryphnusin isolated from the marine sponge Stryphnus fortis inhibit acetylcholinesterase with no effect on muscle function or neuromuscular transmission. Organic and biomolecular chemistry. 2016;14(47):11220-11229
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]
Copyright 2016 Royal Society of Chemistry

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)