Show simple item record

dc.contributor.advisorSoininen, Eeva
dc.contributor.authorEischeid, Isabell
dc.date.accessioned2022-05-05T08:39:03Z
dc.date.available2022-05-05T08:39:03Z
dc.date.issued2022-05-24
dc.description.abstractLong-term temperature increases, higher frequencies of extreme weather events and changes in food web structures will all affect the state of Arctic tundra ecosystems at different temporal and spatial scales. Ecologists are tasked with understanding these biotic and abiotic interactions and finding methods to measure them. This thesis applies new technology and methods within the principles of adaptive monitoring to achieve four overarching goals: 1) Design a conceptual model for Svalbard’s moss tundra ecosystem and define the vegetation monitoring needs of high Arctic tundra systems in the context of climate change and herbivore management. 2) Design new monitoring approaches that help quantify habitat types and drivers of future vegetation state changes. 3) Evaluate the practical implications of using drone imagery, photogrammetry, and image classification-based approaches for monitoring. 4) Assess how the findings of the thesis can contribute to future adaptive monitoring of moss tundra. Drone images and random forest classifiers were reliably able to distinguish up to 15 different tundra ground cover classes, including those that represent disturbances such as winter damage from extreme weather events, pink-footed goose grubbing and bare ground. Snowmelt progression was mapped using drone and satellite images and combined with telemetry data to enable analysis of pink-footed goose behavior. This revealed a consistent correspondence, driven by vegetation class and snowmelt date, of habitat use and vegetation disturbance across spatial scales. Collecting ground truthing data in the field requires a good understanding of focal ecosystem components and their interactions with both abiotic and biotic factors, to not only detect visually distinctive, but also ecologically relevant ground cover classes. A close integration of detailed field-based assessments and drone images can elevate studies of causal ecological relationships into a spatial context. In addition, drone images will continue to improve the quality of information gained from satellite-based remote sensing.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractLong-term temperature increases, higher frequencies of extreme weather events and changes in food web structures will all affect the state of Arctic tundra ecosystems at different temporal and spatial scales. This thesis shows that drone and satellite images can be successful approaches of studying biotic and abiotic interactions in tundra ecosystems. With drone images and automatic classifiers, it was possible to distinguish detailed ground cover classes including those that represent disturbances such as winter damage from extreme weather events and pink-footed goose grubbing. A study that combined field observations, drone- and satellite images as well as telemetry data showed that snowmelt progression drives pink-footed goose spring habitat selection and vegetation disturbance. Combining field and remote sensed data from drones and satellites helped to elevate studies of causal ecological relationships into a spatial context.en_US
dc.description.sponsorshipTromsø Forskningsstiftelse, Aarhus University, Norwegian Polar Institute, SIOSen_US
dc.identifier.isbn978-82-8266-221-5
dc.identifier.urihttps://hdl.handle.net/10037/25016
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Ravolainen, V., Soininen, E.M., Jónsdóttir, I.S., Eischeid, I., Forchhammer, M., van der Wal, R. & Pedersen, Å.Ø. (2020). High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. <i>Ambio, 49</i>, 666-677. Also available in Munin at <a href=https://hdl.handle.net/10037/19080>https://hdl.handle.net/10037/19080</a>. <p>Paper II: Eischeid I., Soininen, E.M., Assmann, J.J., Ims, R.A., Madsen, J., Pedersen, Å.Ø., Pirotti, F., Yoccoz, N.G. & Ravolainen, V.T. (2021). Disturbance Mapping in Arctic Tundra Improved by a Planning Workflow for Drone Studies: Advancing Tools for Future Ecosystem Monitoring. Remote Sensing, 13(21), 4466. Also available in Munin at <a href=https://hdl.handle.net/10037/23541>https://hdl.handle.net/10037/23541</a>. <p>Paper III: Eischeid I., Soininen, E.M., Keeves, K., Madsen, J., Nolet, B., Pedersen, Å.Ø., Yoccoz, N.G. & Ravolainen, V.T. Snowmelt progression drives spring habitat selection and vegetation disturbance by an Arctic avian herbivore at multiple scales. (Manuscript). <p>Paper IV: Bernsteiner, H., Brožová, N., Eischeid, I., Hamer, A., Haselberger, S., Huber, M., Kollert, A., Vandyk, T.M. & Pirotti, F. (2020). Machine learning for classification of an eroding scarp surface using terrestrial photogrammetry with NIR and RGB imagery. <i>ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3-2020</i>, 431-437. Also available in Munin at <a href=https://hdl.handle.net/10037/24970>https://hdl.handle.net/10037/24970</a>.en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subjectVDP::Mathematics and natural science: 400::Zoology and botany: 480::Ecology: 488en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Økologi: 488en_US
dc.subjectVDP::Technology: 500::Information and communication technology: 550::Geographical information systems: 555en_US
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Geografiske informasjonssystemer: 555en_US
dc.titleTundra vegetation ecology from the sky - Aerial images and photogrammetry as tools to monitor landscape changeen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)