ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for bygg, energi og materialteknologi
  • Artikler, rapporter og annet (bygg, energi og materialteknologi)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for bygg, energi og materialteknologi
  • Artikler, rapporter og annet (bygg, energi og materialteknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Review on material and design of anode for microbial fuel cell

Permanent link
https://hdl.handle.net/10037/26266
DOI
https://doi.org/10.3390/en15062283
Thumbnail
View/Open
article.pdf (1.652Mb)
Published version (PDF)
Date
2022-03-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Banerjee, Aritro; Calay, Rajnish K; Mustafa, Mohamad
Abstract
Microbial Fuel Cell (MFC) is a bio-electrochemical system that generates electricity by anaerobic oxidation of substrates. An anode is the most critical component because the primary conversion of wastewater into electrons and protons takes place on the surface of the anode, where a biofilm is formed. This paper describes the essential properties of the anode and classifies its types according to the material used to make it. Anode material is responsible for the flow of electrons generated by the microorganism; hence biocompatibility and conductivity can considered to be the two most important properties. In this paper, the various modification strategies to improve the performance of anodes of MFC are explained through the review of researchers’ published work in this field. The shape and size of the anode turned out to be very significant as the microbial growth depends on the available surface area. The attachment of biofilm on the surface of an anode largely depends on the interfacial surface chemistry. Methods for improving MFC performance by altering the anode material, architecture, biocompatibility, and longevity are discussed with a future perspective giving special importance to the cost.
Publisher
MDPI
Citation
Banerjee A, Calay RK, Mustafa . Review on material and design of anode for microbial fuel cell. Energies. 2022;15:2283(6):1-17
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (bygg, energi og materialteknologi) [91]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)