dc.contributor.author | Andrade-Loarca, Héctor | |
dc.contributor.author | Kutyniok, Gitta Astrid Hildegard | |
dc.contributor.author | Öktem, Ozan | |
dc.contributor.author | Petersen, Philipp | |
dc.date.accessioned | 2022-08-25T11:01:49Z | |
dc.date.available | 2022-08-25T11:01:49Z | |
dc.date.issued | 2022-01-04 | |
dc.description.abstract | We present a deep-learning-based algorithm to jointly solve a reconstruction
problem and a wavefront set extraction problem in tomographic imaging. The
algorithm is based on a recently developed digital wavefront set extractor as well
as the well-known microlocal canonical relation for the Radon transform. We use
the wavefront set information about x-ray data to improve the reconstruction by
requiring that the underlying neural networks simultaneously extract the correct
ground truth wavefront set and ground truth image. As a necessary theoretical
step, we identify the digital microlocal canonical relations for deep convolutional
residual neural networks. We find strong numerical evidence for the effectiveness of
this approach. | en_US |
dc.identifier.citation | Andrade-Loarca, Kutyniok, Öktem, Petersen. Deep microlocal reconstruction for limited-angle tomography. Applied and Computational Harmonic Analysis. 2022;59:155-197 | en_US |
dc.identifier.cristinID | FRIDAID 2022979 | |
dc.identifier.doi | 10.1016/j.acha.2021.12.007 | |
dc.identifier.issn | 1063-5203 | |
dc.identifier.issn | 1096-603X | |
dc.identifier.uri | https://hdl.handle.net/10037/26407 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.journal | Applied and Computational Harmonic Analysis | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.title | Deep microlocal reconstruction for limited-angle tomography | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |