ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cluster-based ensemble learning for wind power modeling from meteorological wind data

Permanent link
https://hdl.handle.net/10037/26461
DOI
https://doi.org/10.1016/j.rser.2022.112652
Thumbnail
View/Open
article.pdf (4.639Mb)
Published version (PDF)
Date
2022-06-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Chen, Hao
Abstract
Reliable and efficient power modeling from meteorological wind data is vital for optimal implementation and monitoring of wind energy, and it is important for understanding turbine control, farm operational optimization, and grid load balance. Based on the idea that similar wind conditions lead to similar wind powers; this paper constructs a modeling scheme that orderly integrates three types of ensemble learning algorithms—bagging, boosting, and stacking—and clustering approaches to achieve wind power modeling from multiple wind-based meteorological factors in a wind farm. The paper also investigates the applications of different clustering algorithms and methodologies to determine cluster numbers in the modeling. The results reveal that all ensemble models with clustering exploit the intrinsic information in wind data and thus outperform models without clustering by approximately 15% on average in modeling wind power. The model with the best-performing Farthest First clustering is computationally rapid and with an improvement of around 30% compared with the baselines. Given the diversity introduced by clustering algorithms, the power modeling performance is further boosted by about 5% by introducing stacking that fuses ensembles with varying clusters. The proposed modeling framework thus demonstrates promise by delivering efficient and robust performance on the targeted problem.
Is part of
Chen, H. (2022). Data-driven Arctic wind energy analysis by statistical and machine learning approaches. (Doctoral thesis). https://hdl.handle.net/10037/26938
Publisher
Elsevier
Citation
Chen H. Cluster-based ensemble learning for wind power modeling from meteorological wind data. Renewable & Sustainable Energy Reviews. 2022
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)