Vis enkel innførsel

dc.contributor.authorJensen, Vilde
dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorAnfinsen, Stian Normann
dc.date.accessioned2022-11-07T10:13:22Z
dc.date.available2022-11-07T10:13:22Z
dc.date.issued2022-11-04
dc.description.abstractThis article presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR). EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), which are suitable for nonstationary and heteroscedastic time series data. EnCQR can be applied on top of a generic forecasting model, including deep learning architectures. EnCQR exploits a bootstrap ensemble estimator, which enables the use of conformal predictors for time series by removing the requirement of data exchangeability. The ensemble learners are implemented as generic machine learning algorithms performing quantile regression (QR), which allow the length of the PIs to adapt to local variability in the data. In the experiments, we predict time series characterized by a different amount of heteroscedasticity. The results demonstrate that EnCQR outperforms models based only on QR or conformal prediction (CP), and it provides sharper, more informative, and valid PIs.en_US
dc.identifier.citationJensen, Bianchi, Anfinsen. Ensemble Conformalized Quantile Regression for Probabilistic Time Series Forecasting. IEEE Transactions on Neural Networks and Learning Systems. 2022en_US
dc.identifier.cristinIDFRIDAID 2069612
dc.identifier.doi10.1109/TNNLS.2022.3217694
dc.identifier.issn2162-237X
dc.identifier.issn2162-2388
dc.identifier.urihttps://hdl.handle.net/10037/27276
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Transactions on Neural Networks and Learning Systems
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.titleEnsemble Conformalized Quantile Regression for Probabilistic Time Series Forecastingen_US
dc.type.versionsubmittedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel