ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Satellite detection of snow avalanches using Sentinel-1 in a transitional snow climate

Permanent link
https://hdl.handle.net/10037/27584
DOI
https://doi.org/10.1016/j.coldregions.2022.103558
Thumbnail
View/Open
article.pdf (5.886Mb)
Accepted manuscript version (PDF)
Date
2022-04-18
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Keskinen, Zachary; Hendrikx, Jordy; Eckerstorfer, Markus; Birkeland, Karl
Abstract
Snow avalanches endanger lives and infrastructure in mountainous regions worldwide. Consistent and accurate datasets of avalanche events are critical for improving hazard forecasting and understanding the spatial and temporal patterns of avalanche activity. Remote sensing-based identification of avalanche debris allow for the acquisition of continuous and spatially consistent avalanches datasets. This study utilizes expert manual in- terpretations of Sentinel-1 synthetic aperture radar (SAR) satellite backscatter images to identify avalanche debris and compares those detections against historical field records of observed avalanches in the transitional snow climates of Wyoming and Utah, USA. We explore and quantify the ability of an expert using Sentinel-1 (a SAR satellite) images to detect avalanche debris on a dataset comprised exclusively of dry slab avalanches. This research utilized four avalanche cycles with 258 field reported avalanches. Due to individual avalanches appearing in multiple overlapping Sentinel-1 images this resulted in 506 potential detections of avalanches in our SAR images, representing the possibility of multiple detections of a single avalanche event in different images. The overall probability of detection (POD) for avalanches large enough to destroy trees or bury a car (i.e., ≥D3 on the destructive size scale) was 65%. There was a significant variance in the POD among the 13 individual SAR image pairs considered (15–86%). Additionally, this study investigated the connection between successful avalanche detections and SAR-specific, topographic, and avalanche type variables. The most correlated variables with higher detection rates were avalanche path lengths, destructive size of the avalanche, incidence angles for the incoming microwaves, average path slope angle, and elapsed time between the avalanche and a Sentinel-1 satellite image acquisition. This study provides a quantification of the controlling variables in the likelihood of detecting avalanches using Sentinel-1 backscatter temporal change detection techniques, as specifically applied to a transitional snow climate
Publisher
Elsevier
Citation
Keskinen, Hendrikx, Eckerstorfer, Birkeland. Satellite detection of snow avalanches using Sentinel-1 in a transitional snow climate. Cold Regions Science and Technology. 2022;199
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3245]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)