Symmetry Reduction in AM/GM-Based Optimization
Permanent link
https://hdl.handle.net/10037/28717Date
2022Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
The arithmetic mean/geometric mean inequality (AM/GM inequality) facilitates classes of nonnegativity certificates and of relaxation techniques for polynomials and, more generally, for exponential sums. Here, we present a first systematic study of the AM/GM-based techniques in the presence of symmetries under the linear action of a finite group. We prove a symmetry-adapted representation theorem and develop techniques to reduce the size of the resulting relative entropy programs. We study in more detail the complexity gain in the case of the symmetric group. In this setup, we can show in particular certain stabilization results. We exhibit several sequences of examples in growing dimensions where the size of the reduced problem stabilizes. Finally, we provide some numerical results, emphasizing the computational speedup.
Publisher
Society for Industrial and Applied MathematicsCitation
Verdure, Moustrou, Naumann, Riener, Theobald. Symmetry Reduction in AM/GM-Based Optimization. SIAM Journal on Optimization. 2022;32(2):765-785Metadata
Show full item recordCollections
Copyright 2022 The Author(s)