ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Critical echo state network dynamics by means of Fisher information maximization

Permanent link
https://hdl.handle.net/10037/29128
DOI
https://doi.org/10.1109/IJCNN.2017.7965941
Thumbnail
View/Open
article.pdf (1.762Mb)
Submitted manuscript version (PDF)
Date
2017-07-03
Type
Chapter
Bokkapittel

Author
Bianchi, Filippo Maria; Livi, Lorenzo; Jenssen, Robert; Alippi, Cesare
Abstract
The computational capability of an Echo State Network (ESN), expressed in terms of low prediction error and high short-term memory capacity, is maximized on the so-called “edge of criticality”. In this paper we present a novel, unsupervised approach to identify this edge and, accordingly, we determine hyperparameters configuration that maximize network performance. The proposed method is application-independent and stems from recent theoretical results consolidating the link between Fisher information and critical phase transitions. We show how to identify optimal ESN hyperparameters by relying only on the Fisher information matrix (FIM) estimated from the activations of hidden neurons. In order to take into account the particular input signal driving the network dynamics, we adopt a recently proposed non-parametric FIM estimator. Experimental results on a set of standard benchmarks are provided and discussed, demonstrating the validity of the proposed method.
Publisher
IEEE
Citation
Bianchi FM, Livi L, Jenssen R, Alippi C: Critical echo state network dynamics by means of Fisher information maximization. In: Choe. 2017 International Joint Conference on Neural Networks (IJCNN) , 2017. IEEE p. 852-858
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)