ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Auxiliary Network: Scalable and agile online learning for dynamic system with inconsistently available inputs

Permanent lenke
https://hdl.handle.net/10037/31496
DOI
https://doi.org/10.1007/978-3-031-30105-6_46
Thumbnail
Åpne
article.pdf (4.290Mb)
Akseptert manusversjon (PDF)
Dato
2022-04-13
Type
Journal article
Tidsskriftartikkel

Forfatter
Agarwal, Rohit; Agarwal, Krishna; Horsch, Alexander; Prasad, Dilip K.
Sammendrag
Streaming classification methods assume the number of input features is fixed and always received. But in many real-world scenarios, some features are reliable while others are unreliable or inconsistent. We propose a novel online deep learning-based model called Auxiliary Network (Aux-Net), which is scalable and agile and can handle any number of inputs at each time instance. The Aux-Net model is based on the hedging algorithm and online gradient descent. It employs a model of varying depth in an online setting using single pass learning. Aux-Net is a foundational work towards scalable neural network for a dynamic complex environment dealing ad hoc or inconsistent inputs. The efficacy of Aux-Net is shown on the Italy Power Demand dataset.
Forlag
Springer Nature
Sitering
Agarwal, R., Agarwal, K., Horsch, A., Prasad, D.K. (2023). Auxiliary Network: Scalable and Agile Online Learning for Dynamic System with Inconsistently Available Inputs. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623, 549–561. Springer, Cham.
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [483]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring