Vis enkel innførsel

dc.contributor.authorAgarwal, Rohit
dc.contributor.authorAgarwal, Krishna
dc.contributor.authorHorsch, Alexander
dc.contributor.authorPrasad, Dilip K.
dc.date.accessioned2023-10-06T18:54:14Z
dc.date.available2023-10-06T18:54:14Z
dc.date.issued2022-04-13
dc.description.abstractStreaming classification methods assume the number of input features is fixed and always received. But in many real-world scenarios, some features are reliable while others are unreliable or inconsistent. We propose a novel online deep learning-based model called Auxiliary Network (Aux-Net), which is scalable and agile and can handle any number of inputs at each time instance. The Aux-Net model is based on the hedging algorithm and online gradient descent. It employs a model of varying depth in an online setting using single pass learning. Aux-Net is a foundational work towards scalable neural network for a dynamic complex environment dealing ad hoc or inconsistent inputs. The efficacy of Aux-Net is shown on the Italy Power Demand dataset.en_US
dc.identifier.citationAgarwal, R., Agarwal, K., Horsch, A., Prasad, D.K. (2023). Auxiliary Network: Scalable and Agile Online Learning for Dynamic System with Inconsistently Available Inputs. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13623, 549–561. Springer, Cham.en_US
dc.identifier.cristinIDFRIDAID 2112117
dc.identifier.doi10.1007/978-3-031-30105-6_46
dc.identifier.urihttps://hdl.handle.net/10037/31496
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.titleAuxiliary Network: Scalable and agile online learning for dynamic system with inconsistently available inputsen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel