Show simple item record

dc.contributor.authorBergland, Harald
dc.contributor.authorBurlakov, Evgenii
dc.contributor.authorWyller, John Andreas
dc.date.accessioned2024-01-12T21:18:32Z
dc.date.available2024-01-12T21:18:32Z
dc.date.issued2023-09-19
dc.description.abstractWe investigate biomass–herbivore–carnivore (top predator) interactions in terms of a tritrophic dynamical systems model. The harvesting rates of the herbivores and the top predators are described by means of a sigmoidal function of the herbivores density and the top predator density, respectively. The main focus in this study is on the dynamics as a function of the natural mortality and the maximal harvesting rate of the top predators. We identify parameter regimes for which we have non-existence of equilibrium points as well as necessary conditions for the existence of such states of the modelling framework. The system does not possess any finite equilibrium states in the regime of high herbivore mortality. In the regime of a high consumption rate of the herbivores and low mortality rates of the top predator, an asymptotically stable finite equilibrium state exists. For this positive equilibrium to exist the mortality of the top predator should not exceed a certain threshold level. We also detect regimes producing coexistence of equilibrium states and their respective stability properties. In the regime of negligible harvesting of the top predator level, we observe a finite window of the natural top predator mortality rates for which oscillations in the top predator-, the herbivore- and the biomass level take place. The lower and upper bound of this window correspond to two Hopf bifurcation points. We also identify a bifurcation diagram using the top predator harvesting rate as a control variable. Using this diagram we detect several saddle node- and Hopf bifurcation points as well as regimes for which we have coexistence of interior equilibrium states, bistability and relaxation type of oscillations.en_US
dc.identifier.citationBergland, Burlakov, Wyller. The Dynamics of Pasture–Herbivores–Carnivores with Sigmoidal Density Dependent Harvesting. Bulletin of Mathematical Biology. 2023;85(11)en_US
dc.identifier.cristinIDFRIDAID 2176920
dc.identifier.doi10.1007/s11538-023-01210-y
dc.identifier.issn0092-8240
dc.identifier.issn1522-9602
dc.identifier.urihttps://hdl.handle.net/10037/32479
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalBulletin of Mathematical Biology
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleThe Dynamics of Pasture–Herbivores–Carnivores with Sigmoidal Density Dependent Harvestingen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)