Full Breit Hamiltonian in the Multiwavelets Framework
Permanent link
https://hdl.handle.net/10037/32727Date
2024-01-01Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Tantardini, Christian; Remigio, Roberto Di; Bjørgve, Magnar; Jensen, Stig Rune; Frediani, LucaAbstract
New techniques in core–electron spectroscopy are necessary to resolve the structures of oxides of f-elements and other strongly correlated materials that are present only as powders and not as single crystals. Thus, accurate quantum chemical methods must be developed to calculate core spectroscopic properties in such materials. In this contribution, we present an important development in this direction, extending our fully adaptive real-space multiwavelet basis framework to tackle the four-component Dirac-Coulomb-Breit Hamiltonian. We show that multiwavelets can reproduce one-dimensional grid-based approaches. They are however a fully three-dimensional approach which can later be extended to molecules and materials. Our multiwavelet implementation attained precise results irrespective of the chosen nuclear model, provided that the error threshold is tight enough and that the chosen polynomial basis is sufficiently large. Furthermore, our results confirmed that in two-electron species, the magnetic and Gauge contributions from s-orbitals are identical in magnitude and can account for the experimental evidence from K and L edges.
Is part of
Bjørgve, M. (2024). Unleashing the VAMPyR. A Python Journey into the Realm of Multiwavelets and Quantum Chemisty. (Doctoral thesis). https://hdl.handle.net/10037/33245.Publisher
ACS PublicationsCitation
Tantardini, Remigio, Bjørgve, Jensen, Frediani. Full Breit Hamiltonian in the Multiwavelets Framework. Journal of Chemical Theory and Computation. 2023Metadata
Show full item recordCollections
Copyright 2023 The Author(s)