ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-Supervised Few-Shot Learning for Ischemic Stroke Lesion Segmentation

Permanent lenke
https://hdl.handle.net/10037/32754
DOI
https://doi.org/10.1109/ISBI53787.2023.10230655
Thumbnail
Åpne
article(1).pdf (4.089Mb)
Akseptert manusversjon (PDF)
Dato
2023-09-01
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Tomasetti, Luca; Hansen, Stine; Khanmohammadi, Mahdieh; Engan, Kjersti; Høllesli, Liv Jorunn; Kurz, Kathinka Dæhli; Kampffmeyer, Michael Christian
Sammendrag
Precise ischemic lesion segmentation plays an essential role in improving diagnosis and treatment planning for ischemic stroke, one of the prevalent diseases with the highest mortality rate. While numerous deep neural network approaches have recently been proposed to tackle this problem, these methods require large amounts of annotated regions during training, which can be impractical in the medical domain where annotated data is scarce. As a remedy, we present a prototypical few-shot segmentation approach for ischemic lesion segmentation using only one annotated sample during training. The proposed approach leverages a novel self-supervised training mechanism that is tailored to the task of ischemic stroke lesion segmentation by exploiting color-coded parametric maps generated from Computed Tomography Perfusion scans. We illustrate the benefits of our proposed training mechanism, leading to considerable improvements in performance in the few-shot setting. Given a single annotated patient, an average Dice score of 0.58 is achieved for the segmentation of ischemic lesions.
Forlag
IEEE
Sitering
Tomasetti, Hansen, Khanmohammadi, Engan, Høllesli, Kurz, Kampffmeyer. Self-Supervised Few-Shot Learning for Ischemic Stroke Lesion Segmentation. IEEE International Symposium on Biomedical Imaging. 2023
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring