Energy-Efficient Marine Engine and Dynamic Wing Evaluation Under Laboratory Conditions to Achieve Emission Reduction Targets in Shipping
Abstract
There is a requirement to comply with the forthcoming IMO & EU requirements to reduce ship emissions by at least 40% in 2030 compared to the 2008 levels. Such medium-term emission reduction targets can only be achieved by introducing novel technologies into the shipping industry. The SeaTech H2020 project (seatech2020.eu) introduces two main innovations that can support the same emission reduction objectives. Those innovations consist of integrating an energy-efficient marine combustion engine with a renewable energy recovery device, i.e. dynamic wing. However, these two technologies are not evaluated in an actual environment in a selected ocean-going vessel. On the other hand, various data sets are collected from both innovations and can be used to quantify their energy efficiencies in a data science environment. Furthermore, it is expected that both innovations should interact with each other in the same data science environment as well as in the respective testing platforms, therefore more realistic vessel operational conditions can be introduced. Hence, this study introduces realistic head wave conditions in both innovations, where the dynamic wing creates adequate thrust to push the vessel forward under the same ocean wave conditions. The same thrust and ocean wave conditions have been applied to marine engine testing as the main contribution of this study. Finally, the data sets collected from the engine testing platform under its loading situations for both wave and thrust conditions of the selected ocean-going vessel are presented in this study.
Publisher
ASMECitation
Perera, Belibassakis: Energy-Efficient Marine Engine and Dynamic Wing Evaluation Under Laboratory Conditions to Achieve Emission Reduction Targets in Shipping. In: ASME .. ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering : Volume 5 : Ocean Engineering, 2023. The American Society of Mechanical Engineers (ASME)Metadata
Show full item recordCollections
Copyright 2023 The Author(s)