Deep Optical Coding Design in Computational Imaging: A data-driven framework
Permanent lenke
https://hdl.handle.net/10037/33158Dato
2023-02-27Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
Arguello, Henry; Bacca, Jorge; Kariyawasam, Hasindu; Vargas, Edwin; Marquez, Miguel; Hettiarachchi, Ramith; Garcia, Hans; Herath, Kithmini; Haputhanthri, Udith; Ahluwalia, Balpreet Singh; So, Peter; Wadduwage, Dushan N.; Edussooriya, Chamira U.S.Sammendrag
Computational optical imaging (COI) systems leverage optical coding elements (CEs) in their setups to encode a high-dimensional scene in a single or in multiple snapshots and decode it by using computational algorithms. The performance of COI systems highly depends on the design of its main components: the CE pattern and the computational method used to perform a given task. Conventional approaches rely on random patterns or analytical designs to set distribution of the CE. However, the available data and algorithm capabilities of deep neural networks (DNNs) have opened a new horizon in CE data-driven designs that jointly consider the optical and computational decoders. Specifically, by modeling the COI measurements through a fully differentiable image-formation model that considers the physics-based propagation of light and its interaction with the CEs, the parameters that define the CE and the computational decoder can be optimized in an end-to-end (E2E) manner. Moreover, by optimizing just CEs in the same framework, inference tasks can be performed from pure optics. This work surveys the recent advances in CE data-driven design and provides guidelines on how to parameterize different optical elements to include them in the E2E framework. As the E2E framework can handle different inference applications by changing the loss function and the DNN, we present low-level tasks such as spectral imaging reconstruction or high-level tasks such as pose estimation with privacy preservation enhanced by using optimal task-based optical architectures. Finally, we illustrate classification and 3D object-recognition applications performed at the speed of the light using all-optics DNNs.
Forlag
IEEESitering
Arguello, Bacca, Kariyawasam, Vargas, Marquez, Hettiarachchi, Garcia, Herath, Haputhanthri, Ahluwalia, So, Wadduwage, Edussooriya. Deep Optical Coding Design in Computational Imaging: A data-driven framework. IEEE Signal Processing Magazine. 2023;40(2):75-88Metadata
Vis full innførselSamlinger
Copyright 2023 The Author(s)