ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model

Permanent lenke
https://hdl.handle.net/10037/33160
Thumbnail
Åpne
article.pdf (916.9Kb)
Publisert versjon (PDF)
Dato
2022-10-15
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Gautam, Srishti; Boubekki, Ahcene; Hansen, Stine; Salahuddin, Suaiba Amina; Jenssen, Robert; Hohne, Marina Marie-Claire; Kampffmeyer, Michael
Sammendrag
The need for interpretable models has fostered the development of self-explainable classifiers. Prior approaches are either based on multi-stage optimization schemes, impacting the predictive performance of the model, or produce explanations that are not transparent, trustworthy or do not capture the diversity of the data. To address these shortcomings, we propose ProtoVAE, a variational autoencoder-based framework that learns class-specific prototypes in an end-to-end manner and enforces trustworthiness and diversity by regularizing the representation space and introducing an orthonormality constraint. Finally, the model is designed to be transparent by directly incorporating the prototypes into the decision process. Extensive comparisons with previous self-explainable approaches demonstrate the superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse explanations, while not degrading predictive performance.
Beskrivelse
Source at https://nips.cc/.
Sitering
Gautam S, Boubekki A, Hansen S, Salahuddin SA, Jenssen R, Hohne MM, Kampffmeyer MC. ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model. Advances in Neural Information Processing Systems. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring