Vis enkel innførsel

dc.contributor.authorBeelen, Peter
dc.contributor.authorJohnsen, Trygve
dc.contributor.authorSingh, Prasant
dc.date.accessioned2024-03-14T14:37:28Z
dc.date.available2024-03-14T14:37:28Z
dc.date.issued2023-06-20
dc.description.abstractWe consider linear codes over a finite field Fq, for odd q, derived from determinantal varieties, obtained from symmetric matrices of bounded ranks. A formula for the weight of a codeword is derived. Using this formula, we have computed the minimum distance for the codes corresponding to matrices upperbounded by any fixed, even rank. A conjecture is proposed for the cases where the upper bound is odd. At the end of the article, tables for the weights of these codes, for spaces of symmetric matrices up to order 5, are given.en_US
dc.identifier.citationBeelen P, Johnsen T, Singh P. Linear codes associated to symmetric determinantal varieties: Even rank case. Finite Fields and Their Applications. 2023;91(October)en_US
dc.identifier.cristinIDFRIDAID 2159265
dc.identifier.doi10.1016/j.ffa.2023.102240
dc.identifier.issn1071-5797
dc.identifier.issn1090-2465
dc.identifier.urihttps://hdl.handle.net/10037/33172
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalFinite Fields and Their Applications
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.titleLinear codes associated to symmetric determinantal varieties: Even rank caseen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel