Comparative analysis of multimodal biomarkers for amyloid-beta positivity detection in Alzheimer's disease cohorts
Permanent link
https://hdl.handle.net/10037/34413Date
2024-02-26Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Mehdipour Ghazi, Mostafa; Selnes, Per; Reina, Santiago Timon; Tecelão, Sandra; Ingala, Silvia; Bjørnerud, Atle; Kirsebom, Bjørn-Eivind Seljelid; Fladby, Tormod; Nielsen, MadsAbstract
Methods: In this comprehensive study, we leveraged a diverse dataset, encompassing participants with varying cognitive statuses from multiple sources, including cohorts from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and our in-house Dementia Disease Initiation (DDI) cohort. As brain amyloid plaques have been proposed as sufficient for AD diagnosis, our primary aim was to assess the effectiveness of multimodal biomarkers in identifying amyloid plaques, using deep machine learning methodologies.
Results: Our findings underscore the robustness of the utilized methods in detecting amyloid beta positivity across multiple cohorts. Additionally, we investigated the potential of demographic data to enhance MRI-based amyloid detection. Notably, the inclusion of demographic risk factors significantly improved our models’ ability to detect amyloid-beta positivity, particularly in early-stage cases, exemplified by an average area under the ROC curve of 0.836 in the unimpaired DDI cohort.
Discussion: These promising, non-invasive, and cost-effective predictors of MRI biomarkers and demographic variables hold the potential for further refinement through considerations like APOE genotype and plasma markers.