Show simple item record

dc.contributor.authorCullen, Luke
dc.contributor.authorMarinoni, Andrea
dc.contributor.authorCullen, Jonathan
dc.date.accessioned2024-11-07T09:01:12Z
dc.date.available2024-11-07T09:01:12Z
dc.date.issued2024-07-10
dc.description.abstractGreenhouse gas (GHG) emissions datasets are often incomplete due to inconsistent reporting and poor transparency. Filling the gaps in these datasets allows for more accurate targeting of strategies aiming to accelerate the reduction of GHG emissions. This study evaluates the potential of machine learning methods to automate the completion of GHG datasets. We use three datasets of increasing complexity with 18 different gap-filling methods and provide a guide to which methods are useful in which circumstances. If few dataset features are available, or the gap consists only of a missing time step in a record, then simple interpolation is often the most accurate method and complex models should be avoided. However, if more features are available and the gap involves non-reporting emitters, then machine learning methods can be more accurate than simple extrapolation. Furthermore, the secondary output of feature importance from complex models allows for data collection prioritization to accelerate the improvement of datasets. Graph-based methods are particularly scalable due to the ease of updating predictions given new data and incorporating multimodal data sources. This study can serve as a guide to the community upon which to base ever more integrated frameworks for automated detailed GHG emissions estimations, and implementation guidance is available at https://hackmd.io/@luke-scot/ML-for-GHG-database-completion and https://doi.org/10.5281/zenodo.10463104. This article met the requirements for a gold-gold JIE data openness badge described at http://jie.click/badges.en_US
dc.identifier.citationCullen, Marinoni, Cullen. Machine learning for gap-filling in greenhouse gas emissions databases. Journal of Industrial Ecology. 2024;28(4):636-647en_US
dc.identifier.cristinIDFRIDAID 2308959
dc.identifier.doi10.1111/jiec.13507
dc.identifier.issn1088-1980
dc.identifier.issn1530-9290
dc.identifier.urihttps://hdl.handle.net/10037/35504
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.journalJournal of Industrial Ecology
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleMachine learning for gap-filling in greenhouse gas emissions databasesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)