Show simple item record

dc.contributor.advisorBernstein, Hans Christopher
dc.contributor.authorChan, Dennis Tin Chat
dc.date.accessioned2024-11-20T10:27:14Z
dc.date.available2024-11-20T10:27:14Z
dc.date.issued2024-12-11
dc.description.abstractAs an engineering field, the goal of synthetic biology is to design, build and implement technological solutions that advance human capability. To achieve this, synthetic biologists must be open to exploring new avenues of engineering strategies and move beyond tradition. The host-chassis has historically been an overlooked design variable in the field of synthetic biology. We show in this thesis that host-context can be leveraged as an engineering tool to broaden the functionalities of genetic circuits and optimize them for different functionalities. Paper I and 2 reveals that the reciprocal influence of host-circuit interactions holds true across species and can even be predicted under standardized conditions. Paper I established that the chassis-effect (the observed differential performance of a genetic device when operating across different host-contexts) can be explained by differences in bacterial physiology among hosts. Transcriptome analysis combined with pangenomic insight in Paper II found differential gene expression of shared core genome (enriched for housekeeping genes) to explain for the chassis-effect. These two explorative studies thereby established a link between gene expression, growth, physiology and device performance on a multi-chassis level. Paper III showcased the value of exploring the chassis-design space by demonstrating how host-context can be used to optimize and tune the performance profile of a genetic device. Chassis contexts also provide native phenotypes that complements the function of genetic device and enhance performance. The chassis-design space thereby represents a new pragmatic design principal with implications towards more powerful biodesign capabilities. This thesis argues that the choice of chassis should not only merit more careful consideration, but a wider range of chassis should be explored in a combinatorial manner. The knowledge uncovered here helps progress the field of biodesign to the next generation of broad host-range synthetic biology that adopts possibilities beyond those imposed by traditional model organisms.en_US
dc.description.abstract<p>Forskningssamfunnet innen syntetiske biologi har gjennom historien preferert modellorganismer som vertsorganisme/chassis på grunn av deres genetiske tilpasningsdyktighet og allerede eksisterende verktøysett. Dette har ført til relativt lavt mangfold i vertsorganismer, noe som representerer en uutnyttet kilde til inspirasjon for utvikling av funksjonelle biologiske systemer. Selv med et økende antall organismer som blir domestisert for bruk til bioteknologiske plattformer, forblir modellorganismer som <i>Escherichia coli, Bacillus subtilis</i> og <i>Saccharomyces cerevisiae</i> de foretrukne vertene. Disse organismene har vist seg uvurderlige i demonstrasjon av konseptbevis, men er ikke nødvendigvis de best mulige vertsorganismene. Flere faktorer avskrekker syntetiske biologer fra å utforske nye chassis-organismer og denne avhandlingen tar for seg to av disse store faktorene. En, er at vår kunnskap om hvordan genetiske kretser oppfører seg på tvers av vertskontekster er begrenset, noe som gjør prediksjoner av atferd gjennom ulike vertsorganismer vanskelig og dermed gjør utforskningen av "chassis-design rommet" en tidkrevende prosess. For det andre, så er den utbredte oppfatningen om at chassiset primært tjener til å gi biologiske ressurser for at den introduserte genetiske kretsen skal fungere, og at justeringer i kretsytelsen effektivt kan gjøres kun gjennom endringer i genetisk kontekst (f.eks. kretsdesign, valg av deler osv.). <p>Artikkel I og II i denne avhandlingen tar for seg den første kunnskapsmangelen og gir innsikt i de biologiske faktorene som ligger til grunn for den mikrobielle "chassis-effekten". Artikkel I avdekker at forskjeller i ytelsen til en genetisk "inverter" enhet var signifikant korrelert med forskjellene i bakteriell fysiologi blant vertsorganismene i studien. Artikkel II er en utvidelse av artikkel I. Artikkel II sporer chassis-effekten på det kvantifiserbare mRNA-transkriptnivået. Hovedfunnene i artikkel II er at chassis-effekten kan tilskrives den differensielle genuttrykksresponsen i delte "core" gener blant nært beslektede <i>Stutzerimonas</i> verter. Resultatene fra disse to studiene avslører at chassis-effekten kan forklares med kvantifiserbare mål for unike vert-krets interaksjoner, og gir dermed grunnleggende innsikt i måter vertsspesifikk ytelse kan forutsies på, med implikasjoner for mer effektiv utforskning av chassis-design rommet. <p>For at syntetisk biologi skal gå utover sitt konseptstadium og bli iverksatt i virkelige applikasjoner, er det av stor interesse å utvide våre ingeniørferdigheter og adoptere så mange ingeniørstrategier som mulig. Artikkel III tar for seg den andre hindrende faktoren. Artikkel III er en demonstrativ studie som utforsker ytelsen til 27 genetiske "toggle-switches" skapt gjennom kombinering av tre vertskontekster og ni RBS-sammensetninger. Artikkel III avdekker at varierende vertskontekst fører til store skift i den samlede ytelsesprofilen, mens justering av RBS fører til mer inkrementelle endringer. Vi finner at dette ingeniørprinsippet kan brukes til å optimalisere den genetiske kretsen mot spesifikke funksjonelle spesifikasjoner, og dermed demonstrere verdien av å utforske chassis-design rommet. <p>Syntetiske biologer anerkjente tidlig i feltets utvikling verdien av å etablere et "verktøysett" med høyt mangfold av genetiske deler å bygge fra, men har vært mye mer konservative i sitt valg av chassis. Valget av chassis påvirker i stor grad ytelsen til genetiske kretser. Denne avhandlingen har som mål å rekonseptualisere det syntetiske biologi-chassiset som en integrert designvariabel som fortjener like mye oppmerksomhet som valget av genetiske deler når man designer genetiske kretser. Disse tre studiene samles for å videreføre syntetisk biologi mot sin neste stadium av "broad-host-range" syntetisk biologi.
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractThe synthetic biology community has historically been biased towards the use of model organisms as synthetic biology chassis due to their genetic tractability and pre-existing toolkits. This has led to the chassis-design space to be relatively underexplored, representing an untapped source of inspiration for the engineering of functional systems. Even with increasing number of microbes being domesticated for use at biotechnology platforms, model organisms such as Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae remain the preferred choice of host. While these workhorse organisms have proved invaluable in the demonstration of proof-of-concept, they do not necessarily represent the most optimal chassis for real-world deployment. Several factors discourage synthetic biologists from exploring the chassis-design space and this thesis addresses two of such major factors. One, is that our knowledge of how genetic circuits behave across host-contexts is lacking, making cross species prediction difficult and thereby exploration of the chassis-design space a tedious process. Second, is the prevalent notion that the chassis primarily only serves to provide resources and machinery for the introduced genetic circuit to function, and that any tuning of circuit performance can be effectively done through alterations in genetic context (e.g., circuit design, choice of part, etc.) alone. Paper I and 2 of this thesis addresses the first knowledge gap and uncovers insight into the biological determinants underpinning the chassis-effect. Paper I found that differences in the performance of a genetic inverter device was significantly correlated to the differences in bacterial physiology among the host organisms of the study. Paper II is an extension of Paper I and sought to relate the chassis-effect at the quantifiable mRNA transcript level. The main finding of Paper II is that the chassis-effect can be attributed to the differential gene expression response in shared core genes among closely related Stutzerimonas hosts. The results from these two studies reveals that the chassis-effect can be explained by quantifiable metrics associated with unique host circuit interactions and thereby provide foundational insight into ways that host-specific performance can be predicted with implications towards more efficient exploration of the chassis design space. For synthetic biology to move beyond its proof-of-concept stage and assume real-world deployment, it is of high interest to expand our engineering capabilities and adopt as many engineering strategies as possible. Paper III addresses the second hindering factor. Paper III is a demonstrative study that explores the performance of a library of genetic toggle switches spanning three host-contexts and nine RBS compositions and uncovers that varying host-context leads to large shifts in overall performance profile, while adjusting RBS leads to more incremental changes. We find that this engineering principle can be applied to optimize the genetic toggle switch towards specific functional specifications (e.g., responsiveness, sensitivity, etc.), thereby demonstrating the value from exploring the chassis-design space. Synthetic biologists recognized early in the field’s conception the value of establishing a toolbox with diverse genetic parts to construct from but has remained much more conservative in its choice of chassis. The choice of chassis profoundly impacts the performance of genetic circuits and this thesis aims to reconceptualize the synthetic biology chassis as an integral design variable that should merit equal amount of consideration as the choice of genetic parts when designing genetic circuit. These three studies coalesce to further progress the field of synthetic biology to its next era of broad-host-range synthetic biology.en_US
dc.description.sponsorshipThe Arctic University of Norway ABSORB—Arctic Carbon Storage from Biomesen_US
dc.identifier.isbn978-82-8266-270-3
dc.identifier.urihttps://hdl.handle.net/10037/35789
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Chan, D.T.C., Baldwin, G.S. & Bernstein, H.C. (2023). Revealing the Host-Dependent Nature of an Engineered Genetic Inverter in Concordance with Physiology. <i>BioDesign Research, 5</i>, 0016. Also available in Munin at <a href=https://hdl.handle.net/10037/32812>https://hdl.handle.net/10037/32812 </a>. <p>Paper II: Chan, D.T.C. & Bernstein, H.C. (2024). Pangenomic landscapes shape performances of a synthetic genetic circuit across <i>Stutzerimonas</i> species. <i>mSystems, 9</i>, e00849-24. Also available in Munin at <a href=https://hdl.handle.net/10037/35583>https://hdl.handle.net/10037/35583</a>. <p>Paper III: Chan, D.T.C., Winter, L., Bjerg, J., Krsmanovic, S., Baldwin, G.S., & Bernstein, H.C. Fine Tuning Genetic Circuits via Host Context and RBS Modulation. (Manuscript under review). Also available on <i>BioRxiv</i> at <a href=https://doi.org/10.1101/2024.07.20.604438>https://doi.org/10.1101/2024.07.20.604438</a>.en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subjectSynthetic Biologyen_US
dc.subjectBiodesignen_US
dc.subjectChassis-Effecten_US
dc.subjectHost-Circuit Interactionsen_US
dc.subjectBiotechnologyen_US
dc.titleExploring the Microbial Chassis-Effect: Implications Towards Greater Biodesignen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)