ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Operationalizing AI/ML in Future Networks: A Bird's Eye View from the System Perspective

Permanent link
https://hdl.handle.net/10037/36701
DOI
https://doi.org/10.1109/MCOM.001.2400033
Thumbnail
View/Open
article.pdf (673.1Kb)
Accepted manuscript version (PDF)
Date
2024-09-09
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Liu, Qiong; Zhang, Tianzhu; Hemmatpour, Masoud; Zhang, Dong; Qiu, Han; Shue Chen, Chung; Mellia, Marco; Aghasaryan, Armen
Abstract
Modern artificial intelligence (AI) technologies, led by machine learning (ML), have gained unprecedented momentum over the past decade. Following this wave of "AI summer," the network research community has also embraced AI/ML algorithms to address many problems related to network operations and management. However, compared to their counterparts in other domains, most ML-based solutions have yet to receive largescale deployment due to insufficient maturity for production settings. This article concentrates on the practical issues of developing and operating ML-based solutions in real networks. Specifically, we enumerate the key factors hindering the integration of AI/ML in real networks, and review existing solutions to uncover the missing components. Further, we highlight a promising direction, that is, machine learning operations (MLOps), that can close the gap. We believe this article spotlights the system-related considerations on implementing and maintaining ML-based solutions, and invigorates their full adoption in future networks.
Publisher
IEEE
Citation
Liu, Zhang, Hemmatpour, Zhang, Qiu, Shue Chen, Mellia, Aghasaryan. Operationalizing AI/ML in Future Networks: A Bird's Eye View from the System Perspective. IEEE Communications Magazine. 2024
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2024 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)