dc.contributor.advisor | Abel, Sören | |
dc.contributor.author | Bleis, Christina | |
dc.date.accessioned | 2025-04-24T09:25:01Z | |
dc.date.available | 2025-04-24T09:25:01Z | |
dc.date.embargoEndDate | 2027-05-09 | |
dc.date.issued | 2025-05-09 | |
dc.description.abstract | Foodborne illnesses cause significant mortality, particularly in underdeveloped nations. The gastric acid barrier in the stomach serves as a vital defense against pathogens, but bacteria with acid tolerance mechanisms can bypass it, often requiring antibiotics for treatment. The growing threat of antibiotic resistance underscores the need to better understand how resistant bacteria emerge. <i>Vibrio cholerae</i>, a foodborne pathogen responsible for severe outbreaks globally, highlights the importance of studying bacterial adaptability and resistance. This doctoral research focused on bacterial adaptability, acid tolerance, and antibiotic resistance, with emphasis on <i>V. cholerae</i> in two of three studies. In the first study, we examined the genomic adaptability of <i>V. cholerae</i> strains under environmental and evolutionary pressures. Using a hybrid de novo assembly of the strain C6706, we identified unique mutations in genes related to quorum sensing, stress response, motility, and acid tolerance. Phenotypic tests revealed significant differences in biofilm formation, motility, and mutation rates between C6706 and the reference strain N16961, critical for <i>V. cholerae</i>’s adaptive evolution. The second study investigated adaptive acid tolerance in <i>V. cholerae</i>, using a high-density transposon library and transposon-insertion sequencing to uncover novel acid tolerance genes. Many of these genes were related to cell membrane changes, suggesting multiple ATR systems, beyond the known amino acid decarboxylase pathways, play crucial roles in acid tolerance. In the third study, we developed a model to explore how antibiotic mechanisms influence resistance. Our findings challenge the idea that bactericidal antibiotics are less likely to drive resistance compared to bacteriostatic ones. We introduced the concept of the secondary mutant selection window, emphasizing the role of secondary mutations in resistance development. These studies highlight the need to integrate genomic, phenotypic, and pharmacodynamic data to better understand foodborne illness pathogenesis and improve therapeutic strategies. | en_US |
dc.description.abstract | Matbårne sykdommer forårsaker en betydelig mengde dødelighet, spesielt i land med underutviklet infrastruktur og renovasjonsordninger. Magesyren er en viktig barriere mot matbårne patogener, men noen bakterier kan utvikle syretoleranse og omgå denne barrieren. Infeksjonen som så kan utvikle seg vil kunne kreve antibiotikabehandling. På grunn av, og for å unngå den videre utviklingen av, antibiotikaresistente bakterier er det viktig å forstå hvordan resistente bakterier fungerer. <i>Vibrio cholerae</i> er en slik matbåren bakterie. Cholera utbrudd som følge av naturkatastrofer understreker viktigheten av å forstå denne bakterien med tanke på tilpasningsevne og resistens utvikling. Denne doktorgradsforskningen fokuserte på bakteriell tilpasningsevne, syretoleranse og antibiotikaresistens, med hovedvekt på <i>V. cholerae</i> i to av tre studier. I den første studien undersøkte vi den genomiske tilpasningsevnen til <i>V. cholerae</i>-stamme under miljømessige og evolusjonære påkjenninger. Ved å bruke en hybrid de novo-sammenstilling av stammen C6706 identifiserte vi unike mutasjoner i gener relatert til quorum sensing, stressrespons, motilitet og syretoleranse. Fenotypiske tester avslørte betydelige forskjeller i biofilmdannelse, motilitet og mutasjonsrater mellom C6706 og referansestammen N16961, som er avgjørende for <i>V. cholerae</i>s adaptive evolusjon. Den andre studien undersøkte adaptiv syretoleranse hos <i>V. cholerae</i> ved bruk av et høy-tetthets transposonbibliotek og transposon-innsettingssekvensering for å avdekke nye gener for syretoleranse. Mange av disse genene var knyttet til endringer i cellemembranen, noe som tyder på at flere syretoleransesystemer, utover de kjente aminosyredekarboksylaseveiene, spiller viktige roller i syretoleranse. I den tredje studien utviklet vi en modell for å utforske hvordan antibiotikamekanismer påvirker resistens. Våre funn utfordrer ideen om at bakteriedrepende antibiotika er mindre tilbøyelige til å fremme resistens enn bakteriostatiske antibiotika. Vi introduserte konseptet «det sekundære mutante seleksjonsvinduet», som fremhever betydningen av sekundære mutasjoner i resistensutvikling. Disse studiene understreker behovet for å integrere genomiske, fenotypiske og farmakodynamiske data for å bedre forstå patogenesen av matbårne sykdommer og forbedre terapeutiske strategier. | en_US |
dc.description.doctoraltype | ph.d. | en_US |
dc.description.popularabstract | Foodborne illnesses remain a serious global health challenge, especially in underdeveloped nations, where they cause countless deaths every year. The stomach’s gastric acid acts as a natural shield, destroying most harmful bacteria that enter our system. But some pathogens, like Vibrio cholerae, have evolved ways to survive this acid barrier. Once through, they can cause severe infections, often requiring antibiotics to control them. However, with antibiotic resistance on the rise, understanding how these bacteria adapt and survive is more crucial than ever. This research dives into bacterial survival strategies, focusing on how foodborne bacteria adapt to harsh conditions like stomach acid, and how they develop resistance to antibiotics. In the first study, we explored how V. cholerae evolves to withstand environmental pressures. By comparing the genomes of two strains, we identify mutations in genes in communication, stress management, and acid resistance. These changes help the bacterium thrive in hostile environments. The second study took a closer look at acid tolerance. Using advanced genetic techniques, we identified new genes that play a role in helping V. cholerae survive acidic conditions. These genes point to multiple defense systems at work. Finally, the third study addressed antibiotic resistance, challenging traditional ideas about how resistance develops. We proposed a new concept – the secondary mutant selection window – that highlights how secondary mutations can drive resistance, reshaping how we think about antibiotic use. These findings shed light on the ways bacteria adapt and survive, emphasizing the need for new strategies to combat foodborne diseases and antibiotic resistance. | en_US |
dc.description.sponsorship | Norges Forskningsråd | en_US |
dc.identifier.isbn | 978-82-350-0020-0 | |
dc.identifier.uri | https://hdl.handle.net/10037/36933 | |
dc.language.iso | eng | en_US |
dc.publisher | UiT The Arctic University of Norway | en_US |
dc.publisher | UiT Norges arktiske universitet | en_US |
dc.relation.haspart | <p>Paper I: Lorentzen, Ø.M., Bleis, C. & Abel, S. (2024). A comparative genomic and phenotypic study of <i>Vibrio cholerae</i> model strains using hybrid sequencing. <i>Microbiology, 170</i>(9), 001502. Also available in Munin at <a href=https://hdl.handle.net/10037/35419>https://hdl.handle.net/10037/35419</a>.
<p>Paper II: Bleis, C. & Abel, S. Identification of Acid Tolerance Genes in <i>Vibrio cholerae</i> through Transposon-Insertion Sequencing. (Manuscript).
<p>Paper III: Hemez, C., Clarelli, F., Palmer, A.C., Bleis, C., Abel, S., Chindelevitch, L., Cohen, T. & Abel Zur Wiesch, P. (2022). Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. <i>Computational and Structural Biotechnology Journal, 20</i>, 4688–4703. Also available in Munin at <a href=https://hdl.handle.net/10037/27291>https://hdl.handle.net/10037/27291</a>. | en_US |
dc.rights.accessRights | embargoedAccess | en_US |
dc.rights.holder | Copyright 2025 The Author(s) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.subject | Vibrio cholerae | en_US |
dc.subject | Acid tolerance | en_US |
dc.subject | Sequencing | en_US |
dc.title | Adaptive responses in foodborne pathogens to environmental and antibiotic stress | en_US |
dc.type | Doctoral thesis | en_US |
dc.type | Doktorgradsavhandling | en_US |