Vis enkel innførsel

dc.contributor.advisorSvendsen, Kristian
dc.contributor.authorAskar, Mohsen
dc.date.accessioned2025-05-07T09:26:06Z
dc.date.available2025-05-07T09:26:06Z
dc.date.issued2025-05-23
dc.description.abstractThis thesis focuses on developing a Machine Learning (ML) model to predict the first hospital admission in older Norwegian patients. Addressing the complexity of predicting all-cause hospitalizations required a comprehensive approach, beginning with a systematic review of existing work. The review highlighted some important gaps in the use of ML for predicting hospitalization such as challenges in representing Health Code Systems (HCSs), the quality of reporting, and individual clinical interpretations. These insights were starting points for the methodological and practical frameworks presented in this thesis. To tackle the representation of HCSs, while taking into consideration the trade-off between model performance and meaningful clinical interpretations, we proposed a methodology based on Network Analysis (NA) modularity detection. The idea was to group these codes after their prevalence in the population. HCSs such as the Internation Classification of Disease (ICD), were modeled as a network, where nodes represent the codes and edges quantify co-occurrence among patients. The methodology demonstrated good predicting performance and several advantages over traditional grouping approaches. Building on that, and to validate the clinical relevance of this methodology, we demonstrated a framework for detecting and interpreting Multimorbidity Patterns (MPs) using data from the Norwegian elderly hospitalized population. This thesis focuses on developing a Machine Learning (ML) model to predict the first hospital admission in older Norwegian patients. Addressing the complexity of predicting all-cause hospitalizations required a comprehensive approach, beginning with a systematic review of existing work. The review highlighted some important gaps in the use of ML for predicting all-cause hospitalization such as challenges in representing high-dimensional Health Code Systems (HCSs), the quality of reporting, clinical interpretations on the individual patient level, and models’ deployment. These insights were the starting point for the methodological and practical framework presented in this thesis. To tackle the representation of HCSs, while taking into consideration the trade-off between model performance and meaningful clinical interpretations, we proposed a methodology based on Network Analysis (NA) modularity detection. The idea was to group these codes after their prevalence in the population. HCSs such as the Internation Classification of Disease (ICD), were modeled as a network, where nodes represent the codes and edges quantify co-occurrence among patients. The methodology demonstrated good prediction performance and several advantages over traditional grouping approaches. Building on that, and to validate the clinical relevance of this methodology, we demonstrated a framework for detecting and interpreting Multimorbidity Patterns (MPs) using data from the Norwegian older patient hospitalized population. We finally developed an ML model to predict all-cause somatic hospitalizations. We applied a pipeline to achieve good model performance and to find the most influential features for predicting hospitalizations. We also aimed to address some of the identified gaps in the literature and integrate the usage of the proposed methodology of representing HCSs. The model pipeline incorporated diverse data samples for model training, feature selection technique, and algorithm groups. The model was deployed as a web application to demonstrate the potential use of this work in practice. The thesis provides a clinically relevant framework for healthcare systems investigating similar outcomes and puts the foundation for future research on the Norwegian national level to refine predictive models, expand multimorbidity analyses, and address challenges in clinical deployment.en_US
dc.description.abstractDenne avhandlingen fokuserer på å utvikle en maskinlæringsmodell (ML) for å predikere den første sykehusinnleggelsen hos eldre norske pasienter. Håndteringen av kompleksiteten av predikering alle typer sykehusinnleggelser krevde en omfattende tilnærming. Vi begynte med en systematisk gjennomgang av eksisterende arbeid. Gjennomgangen avdekket flere viktige svakheter i bruken av ML til å forutsi sykehusinnleggelser, blant annet utfordringer med representasjon av Health Code Systems (HCS), kvaliteten på rapportering og individuelle kliniske tolkninger. Disse funnene dannet utgangspunktet for de metodiske og praktiske rammene som presenteres i denne avhandlingen. For å takle representasjon av HCS og balansere hensynet til både modellens ytelse og meningsfulle kliniske tolkninger, foreslo vi en metodikk basert på modulæritetsdeteksjon i nettverksanalyse (NA). Målet var å gruppere kodene ut fra hvor vanlige de er i befolkningen. HCS-er, som for eksempel International Classification of Disease (ICD), ble modellert som et nettverk der noder representerer kodene og kantene viser samforekomst blant pasienter. Metodikken ga god modellytelse og viste flere fordeler sammenlignet med tradisjonelle grupperingsmetoder. For å bekrefte den kliniske relevansen av denne tilnærmingen, lagde vi et rammeverk for å oppdage og tolke multimorbiditetsmønstre (MP-er) ved bruk av data fra eldre sykehuspasienter i Norge. Vi utviklet til slutt en ML-modell for å predikere somatiske sykehusinnleggelser av alle årsaker. Hensikten var å fylle noen av kunnskapshullene i litteraturen og inkludere den foreslåtte metodikken for å representere HCS. Modellen ble bygget ved hjelp av ulike datahåndteringsteknikker, metoder for utvelgelse av funksjoner og flere algoritmegrupper. Den ble deretter gjort tilgjengelig som en nettapplikasjon for å illustrere hvordan den kan tas i bruk i praksis. Avhandlingen presenterer et klinisk relevant rammeverk for helsesektorer som ønsker å undersøke tilsvarende problemstillinger, og legger grunnlaget for videre forskning på nasjonalt nivå i Norge for å forbedre prediksjonsmodeller, utvide multimorbiditetsanalyser og adressere utfordringer ved klinisk implementering.en_US
dc.description.doctoraltypeph.d.en_US
dc.description.popularabstractWith an aging population and rising healthcare demands, we need to incorporate domain knowledge and smart tools to alleviate this burden. The thesis explores how national registries can be used to predict hospitalizations in older adults. We used Machine Learning (ML) to look at health records to find patterns that might show when someone is likely to need hospital care. We began by reviewing previous work and found some areas that needed more work. One big challenge was how to represent the different medical codes in ML models. We introduced a new method of grouping similar medical codes, which made it easier for ML algorithms to understand clinical patterns. Using the same method, we studied disease combination patterns in the older population. Finally, we built an ML model that can predict admissions by considering multiple health factors of patients’ health history. The model can support doctors and hospitals in planning better care and possibly prevent hospital stays.en_US
dc.identifier.isbn978-82-350-0022-4
dc.identifier.urihttps://hdl.handle.net/10037/37007
dc.language.isoengen_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.relation.haspart<p>Paper I: Askar, M., Tafavvoghi, M., Småbrekke, L., Bongo, L.A. & Svendsen, K. (2024). Using machine learning methods to predict all-cause somatic hospitalizations in adults: A systematic review. <i>PLoS One, 19</i>(8), e0309175. Also available in Munin at <a href=https://hdl.handle.net/10037/37006>https://hdl.handle.net/10037/37006</a>. <p>Paper II: Askar, M., Småbrekke, L., Holsbø, E., Bongo, L.A. & Svendsen, K. (2024). “Using network analysis modularity to group health code systems and decrease dimensionality in machine learning models.” <i>Exploratory Research in Clinical and Social Pharmacy, 14</i>, 100463. Also available in Munin at <a href=https://hdl.handle.net/10037/34833>https://hdl.handle.net/10037/34833</a>. <p>Paper III: Askar, M., Garcia, B.H. & Svendsen, K. Exploring multimorbidity patterns in older hospitalized Norwegian patients using Network Analysis modularity. (Submitted manuscript). Now published in <i>International Journal of Medical Informatics, 201</i>, 2025, 105954, available in Munin at <a href=https://hdl.handle.net/10037/37005>https://hdl.handle.net/10037/37005</a>. <p>Paper IV: Askar, M., Småbrekke, L., Holsbø, E., Bongo, L.A. & Svendsen, K. Machine Learning-Based Prediction of Non-elective Hospitalizations in older Norwegians patients: A Multi-Register Study Using Ensemble Methods. (Manuscript).en_US
dc.relation.isbasedonData for paper III: Askar, M. (2024). Replication Data for: Exploring multimorbidity patterns in older hospitalized Norwegian patients using network analysis modularity. DataverseNO, V1, <a href=https://doi.org/10.18710/XGZKU5>https://doi.org/10.18710/XGZKU5</a>.en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.subjectMachine Learningen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectPharmacoepidemiologyen_US
dc.subjectHealthcare Registeriesen_US
dc.subjectHospitalizationen_US
dc.subjectElderlyen_US
dc.subjectNetwork Analysisen_US
dc.subjectModularity Detectionen_US
dc.subjectPredcition Modelsen_US
dc.subjectMultimorbidity Patternsen_US
dc.subjectSystematic Reviewen_US
dc.titlePredicting Norwegian elderly hospitalizations using Machine Learningen_US
dc.typeDoctoral thesisen_US
dc.typeDoktorgradsavhandlingen_US


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)