ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Building trustworthy AI: Transparent AI systems via language models, ontologies, and logical reasoning (TranspNet)

Permanent link
https://hdl.handle.net/10037/37117
DOI
https://doi.org/10.1007/978-3-031-89274-5_3
Thumbnail
View/Open
article.pdf (372.8Kb)
Accepted manuscript version (PDF)
Date
2025-05-16
Type
Chapter
Bokkapittel

Author
Machot, Fadi Al; Horsch, Martin Thomas; Ullah, Habib
Abstract
Growing concerns over the lack of transparency in AI, particularly in high-stakes fields like healthcare and finance, drive the need for explainable and trustworthy systems. While Large Language Models (LLMs) perform exceptionally well in generating accurate outputs, their “black box” nature poses significant challenges to transparency and trust. To address this, the paper proposes the TranspNet pipeline, which integrates symbolic AI with LLMs. By leveraging domain expert knowledge, retrieval-augmented generation (RAG), and formal reasoning frameworks like Answer Set Programming (ASP), TranspNet enhances LLM outputs with structured reasoning and verification. This approach strives to help AI systems deliver results that are as accurate, explainable, and trustworthy as possible, aligning with regulatory expectations for transparency and accountability. TranspNet provides a solution for developing AI systems that are reliable and interpretable, making it suitable for real-world applications where trust is critical.
Publisher
Springer Nature
Citation
Machot, Horsch, Ullah: Building trustworthy AI: Transparent AI systems via language models, ontologies, and logical reasoning (TranspNet). In: Machot, Horsch, Scholze. Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany, 2025. Springer Nature p. 25-34
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3247]
Copyright 2025 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)