ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The eyes of the deep diving hooded seal (Cystophora cristata) enhance sensitivity to ultraviolet light

Permanent link
https://hdl.handle.net/10037/8811
DOI
https://doi.org/10.1242/bio.011304
Thumbnail
View/Open
article.pdf (660.4Kb)
publisher's pdf (PDF)
Date
2015-05-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Hogg, Chris; Neveu, Magella; Folkow, Lars; Stokkan, Karl-Arne; Kam, Jaimie Hoh; Douglas, Ron H; Jeffery, Glen
Abstract
The mammalian visual range is approximately 400–700 nm, although recent evidence suggests varying ultraviolet (UV) extensions in diverse terrestrial species. UV sensitivity may have advantages in the dim, blue light shifted environment experienced by submerged marine mammals. It may also be advantageous when seals are on land as UV is reflected by snow and ice but absorbed by fur, enhancing visual contrast. Here we show that the pelagic hooded seal (Cystophora cristata) has a highly UV permissive cornea and lens. Seals like other carnivores have a tapetum lucidum (TL) reflecting light back through the retina increasing sensitivity. The TL in this seal is unusual being white and covering almost the entire retina unlike that in other carnivores. Spectral reflectance from its surface selectively increases the relative UV/blue components >10 times than other wavelengths. Retinal architecture is consistent with a high degree of convergence. Enhanced UV from a large TL surface with a high degree of retinal convergence will increase sensitivity at a cost to acuity. UV electrophysiological retina responses were only obtained to dim, rod mediated stimuli, with no evidence of cone input. As physiological measurements of threshold sensitivity are much higher than those for psychophysical detection, these seals are likely to be more UV sensitive than our results imply. Hence, UV reflections from the TL will afford increased sensitivity in dim oceanic environments.
Description
Published version. Source at http://doi.org/10.1242/bio.011304.
Publisher
Company of Biologists
Citation
Biology Open 2015, 4:812-818
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1630]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)