ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mixed exposure to bacterial lipopolysaccharide and seafood proteases augments inflammatory signalling in an airway epithelial cell model (A549)

Permanent link
https://hdl.handle.net/10037/8860
DOI
https://doi.org/10.1177/0748233715590914
Thumbnail
View/Open
article.pdf (722.0Kb)
accepted manuscript version (PDF)
Date
2015-07-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Bhagwat, Sampada Satchidanand; Larsen, Anett Kristin; Seternes, Ole Morten; Bang, Berit
Abstract
Seafood industry workers exhibit increased prevalence of respiratory symptoms due to exposure to bioaerosols containing a mixture of bioactive agents. In this study, a human pulmonary epithelial cell model (A549) was exposed to mixtures of bacterial lipopolysaccharide (LPS) and protease-activated receptor-2 (PAR-2) agonists H-Ser-Leu-Ile-Gly-Lys-Val-NH2 (SLIGKV-NH2), purified salmon (Salmo salar) trypsin or purified king crab (Paralithodes camtschaticus) trypsin. The inflammatory response was measured based on nuclear factor-kappa B (NF-kB) activation of transcription in a luciferase reporter gene assay and interleukin 8 (IL-8) secretion in an enzyme-linked immunosorbent assay. We observed that mixtures of SLIGKV-NH2 or trypsins with LPS augmented the activation of NF-kB and secretion of IL-8. The effect on IL-8 secretion was synergistic when both trypsins and LPS were used in the lower concentration range. The results demonstrate that exposure to mixtures of agents that are relevant to seafood industry workplaces may lead to increased inflammatory signalling compared with exposure to the individual agents alone. Furthermore, the results indicate that synergism may occur with the combined exposure to seafood trypsins and LPS and is most likely to occur when exposure to either agent is low.
Description
Published version. Source at http://doi.org/10.1177/0748233715590914.
Publisher
SAGE Publications
Citation
Toxicology and industrial health 2015
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1636]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)