ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovery of Novel Inhibitor Scaffolds against the Metallo-beta-lactamase VIM-2 by Surface Plasmon Resonance (SPR) Based Fragment Screening

Permanent link
https://hdl.handle.net/10037/8958
DOI
https://doi.org/10.1021/acs.jmedchem.5b01289
Thumbnail
View/Open
article.pdf (1.505Mb)
accepted manuscript version (PDF)
Date
2015-10-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Christopeit, Tony; Carlsen, Trine Josefine Olsen; Helland, Ronny; Leiros, Hanna-Kirsti S.
Abstract
Metallo-β-lactamase (MBL) inhibitors can restore the function of carbapenem antibiotics and therefore help to treat infections of antibiotic resistant bacteria. In this study, we report novel fragments inhibiting the clinically relevant MBL Verona integron-encoded metallo-β-lactamase (VIM-2). The fragments were identified from a library of 490 fragments using an orthogonal screening approach based on a surface plasmon resonance (SPR) based assay combined with an enzyme inhibition assay. The identified fragments showed IC50 values between 14 and 1500 μM and ligand efficiencies (LE) between 0.48 and 0.23 kcal/mol per heavy atom. For two of the identified fragments, crystal structures in complex with VIM-2 were obtained. The identified fragments represent novel inhibitor scaffolds and are good starting points for the design of potent MBL inhibitors. Furthermore, the established SPR based assay and the screening approach can be adapted to other MBLs and in this way improve the drug discovery process for this important class of drug targets.
Description
Accepted manuscript version. Published version at http://doi.org/10.1021/acs.jmedchem.5b01289.
Publisher
American Chemical Society
Citation
Journal of Medicinal Chemistry 2015, 58(21):8671-8682
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)