ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • Vis innførsel
  •   Hjem
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

How Exercise May Amend Metabolic Disturbances in Diabetic Cardiomyopathy

Permanent lenke
https://hdl.handle.net/10037/8987
DOI
https://doi.org/10.1089/ars.2015.6304
Thumbnail
Åpne
article.pdf (499.8Kb)
publisher's pdf (PDF)
Dato
2015-04-28
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Hafstad, Anne Dragøy; Boardman, Neoma Tove; Aasum, Ellen
Sammendrag
Significance: Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. Recent Advances: Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. Critical Issues: Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. Future Directions: Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Beskrivelse
Published version. Source at http://doi.org/10.1089/ars.2015.6304.
Forlag
Mary Ann Liebert, Inc
Sitering
Antioxidants and Redox Signaling 2015, 22(17)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (medisinsk biologi) [1104]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring