ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Middle to late Holocene paleoproductivity reconstructions for the western Barents Sea: a model-data comparison

Permanent link
https://hdl.handle.net/10037/9022
DOI
https://doi.org/10.1007/s41063-015-0002-z
Thumbnail
View/Open
article.pdf (2.592Mb)
(PDF)
Date
2015-11-30
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Pathirana, Irene Dorothea; Knies, Jochen; Felix, Maarten; Mann, U.; Ellingsen, Ingrid H.
Abstract
In this study we focus on late Holocene primary productivity (PP) variability in the western Barents Sea and its response to variable sea ice coverage by combining PP reconstructed from several sediment cores with regional PP trends simulated with a well-constrained organic facies model, OF-Mod 3D. We find that modern production rates reconstructed from buried marine organic matter (‘‘bottomup’’) resemble simulated export production at 50 m water depth inferred from numerical simulations of surface water PP in a 3D ocean model, SINMOD (‘‘top-down’’). Paleoproductivity rates in the northern Barents Sea are more variable and generally higher (30–150 gC m-2 year-1 ) than in the SW Barents Sea region (\75 gC m-2 year-1 ) throughout the last 6000 years BP. In the SW Barents Sea, PP rates and terrestrial organic matter (TOM) supply remain constantly low indicating present-day-like oceanographic conditions with only marginal influence of sea ice related processes during the last 6000 years BP. PP rates in the northern Barents Sea indicate a shift from stable modern-like conditions prior to 2800 BP to denser, more permanent sea ice coverage along the marginal ice zone (MIZ) between 2800 and 1000 years BP and low PP rates. PP rates increase around 1000 years BP indicating a northward shift of the MIZ and accelerated export towards the seabed. During the last 500 years a pronounced decline in PP rates towards the present day indicates reduced annual duration of the MIZ in the area due to global warming. Our results suggest that a combination of first-year ice and higher PP in a warming pan-Arctic may point to a potential Arctic carbon sink while sea ice is still present.
Description
Published version also available at http://dx.doi.org/10.1007/s41063-015-0002-z
Publisher
Springer
Citation
arktos The Journal of Arctic Geosciences 2015, 1(1)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [814]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)