Show simple item record

dc.contributor.authorDemissie, Taye Beyene
dc.contributor.authorKostenko, Nataliya
dc.contributor.authorKomorovsky, Stanislav
dc.contributor.authorRepisky, Michal
dc.contributor.authorIsaksson, Johan
dc.contributor.authorBayer, Annette
dc.contributor.authorRuud, Kenneth
dc.date.accessioned2016-09-21T08:24:08Z
dc.date.available2016-09-21T08:24:08Z
dc.date.issued2015-07-24
dc.description.abstractWe present a theoretical and experimental study of the structure and nuclear magnetic resonance (NMR) parameters of the pentacarbonyltungsten complexes of η<sup>1</sup>-2-(trimethylstannyl)-4,5-dimethylphosphinine, η<sup>2</sup>-norbornene, and imidazolidine-2-thione. The three complexes have a pseudo-octahedral molecular structure with the six ligands bonded to the tungsten atom. The η<sup>1</sup>-2-(trimethylstannyl)-4,5-dimethylphosphinine-pentacarbonyl tungsten complex was synthesized for the first time. For all compounds, we present four-component relativistic calculations of the NMR parameters at the Dirac–Kohn–Sham density functional level of theory using hybrid functionals. These large-scale relativistic calculations of NMR chemical shifts and spin–spin coupling constants were compared with available experimental data, either taken from the literature or measured in this work. The inclusion of solvent effects modeled using a conductor-like screening model was found to improve agreement between the calculated and experimental NMR parameters, and our best estimates for the NMR parameters are generally in good agreement with available experimental results. The present work demonstrates that four-component relativistic theory has reached a level of maturity that makes it a convenient and accurate tool for modeling and understanding chemical shifts and indirect spin–spin coupling constants of organometallic compounds containing heavy elements, for which conventional non-relativistic theory breaks down.en_US
dc.description.sponsorshipThis work has received support from the Research Council of Norway through a Centre of Excellence Grant (Grant No. 179568/V30) and project grants (Grant No. 214095, 177558) and the European Research Council starting grant (Grant No. 279619). The work has also received support from the Norwegian Supercomputing program NOTUR (Grant No. NN4654K).en_US
dc.descriptionAccepted manuscript version. Publisher's version available at <a href=http://doi.org/10.1002/poc.3476>http://doi.org/10.1002/poc.3476</a>.en_US
dc.identifier.citationJournal of Physical Organic Chemistry 2015, 28(12):723-731en_US
dc.identifier.cristinIDFRIDAID 1252569
dc.identifier.doi10.1002/poc.3476
dc.identifier.issn0894-3230
dc.identifier.issn1099-1395
dc.identifier.urihttps://hdl.handle.net/10037/9739
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.projectIDNotur/NorStore: NN4654K
dc.relation.projectIDEU: 279619
dc.relation.projectIDNorges forskningsråd: 214095
dc.relation.projectIDNorges forskningsråd: 177558
dc.relation.projectIDNorges forskningsråd: 179568
dc.rights.accessRightsopenAccess
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440::Teoretisk kjemi, kvantekjemi: 444en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440::Organisk kjemi: 441en_US
dc.subjecttungsten carbonylen_US
dc.subjectheavy elementsen_US
dc.subjectNMR;en_US
dc.subjectspin-spin coupling constantsen_US
dc.subjectfour-component calculationsen_US
dc.subjectrelativistic effectsen_US
dc.titleExperimental and four-component relativistic DFT studies of tungsten carbonyl complexesen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record