ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iron/Brønsted Acid Catalyzed Asymmetric Hydrogenation: Mechanism and Selectivity-Determining Interactions

Permanent link
https://hdl.handle.net/10037/9772
DOI
https://doi.org/10.1002/chem.201500602
Thumbnail
View/Open
Article.pdf (2.940Mb)
Accepted manuscript version (PDF)
Date
2015-06-03
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Hopmann, Kathrin Helen
Abstract
Hydrogenation catalysts involving abundant base metals such as cobalt or iron are promising alternatives to precious metal systems. Despite rapid progress in this field, base metal catalysts do not yet achieve the activity and selectivity levels of their precious metal counterparts. Rational improvement of base metal complexes is facilitated by detailed knowledge about their mechanisms and selectivity-determining factors. The mechanism for asymmetric imine hydrogenation with Knölker’s iron complex in the presence of chiral phosphoric acids is here investigated computationally at the DFT-D level of theory, with models of up to 160 atoms. The resting state of the system is found to be an adduct between the iron complex and the deprotonated acid. Rate-limiting H2 splitting is followed by a stepwise hydrogenation mechanism, in which the phosphoric acid acts as the proton donor. C[BOND]H⋅⋅⋅O interactions between the phosphoric acid and the substrate are involved in the stereocontrol at the final hydride transfer step. Computed enantiomeric ratios show excellent agreement with experimental values, indicating that DFT-D is able to correctly capture the selectivity-determining interactions of this system.
Description
Accepted manuscript version. Publisher's version available at http://doi.org/10.1002/chem.201500602.
Publisher
Wiley
Citation
Chemistry - A European Journal 2015, 21(28):10020-10030
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)