dc.contributor.author | Di Remigio, Roberto | |
dc.contributor.author | Repisky, Michal | |
dc.contributor.author | Komorovsky, Stanislav | |
dc.contributor.author | Hrobárik, Peter | |
dc.contributor.author | Frediani, Luca | |
dc.contributor.author | Ruud, Kenneth | |
dc.date.accessioned | 2017-03-17T12:18:15Z | |
dc.date.available | 2017-03-17T12:18:15Z | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | The description of chemical phenomena in solution is as challenging as it is im-
portant for the accurate calculation of molecular properties. Here, we present the
implementation of the polarizable continuum model (PCM) in the four-component
Dirac–Kohn–Sham density functional theory framework, o
↵
ering a cost-e
↵
ective way
to concurrently model solvent and relativistic e
↵
ects. The implementation is based
on the matrix representation of the Dirac–Coulomb Hamiltonian in the basis of
restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear
Kramers unrestricted formalism implemented in the program
ReSpect
,andthein-
tegral equation formalism of the PCM (IEF-PCM) available through the standalone
library
PCMSolver
. Calculations of EPR parameters (
g
-tensors and hyperfine cou-
pling
A
-tensors), as well as of the temperature-dependent contribution to paramag-
netic NMR (pNMR) shifts, are presented to validate the model and to demonstrate
the importance of taking both relativistic and solvent e
↵
ects into account for mag-
netic properties. As shown for selected Ru and Os complexes, the solvent shifts may
amount to as much as 25% of the gas-phase values for
g
-tensor components and
even more for pNMR shifts in some extreme cases. | en_US |
dc.description | Source:<a href=http://www.tandfonline.com/doi/full/10.1080/00268976.2016.1239846>http://dx.doi.org/10.1080/00268976.2016.1239846</a> | en_US |
dc.identifier.citation | Di Remigio RDR, Repisky M, Komorovsky S, Hrobárik P, Frediani L, Ruud K. Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts. Molecular Physics. 2016;115:214-227 | en_US |
dc.identifier.cristinID | FRIDAID 1395390 | |
dc.identifier.doi | 10.1080/00268976.2016.1239846 | |
dc.identifier.issn | 0026-8976 | |
dc.identifier.issn | 1362-3028 | |
dc.identifier.uri | https://hdl.handle.net/10037/10764 | |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles. Molecular Physics | en_US |
dc.relation.journal | Molecular Physics | |
dc.relation.projectID | Notur/NorStore: NN4654K | en_US |
dc.relation.projectID | Norges forskningsråd: 214095 | en_US |
dc.relation.projectID | Norges forskningsråd: 179568 | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Kjemi: 440::Teoretisk kjemi, kvantekjemi: 444 | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Chemistry: 440::Theoretical chemistry, quantum chemistry: 444 | en_US |
dc.subject | Relativity | en_US |
dc.subject | Dirac–Kohn–Sham | en_US |
dc.subject | EPR | en_US |
dc.subject | paramagnetic | en_US |
dc.subject | NMR | en_US |
dc.title | Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |