Show simple item record

dc.contributor.advisorFlå, Tor
dc.contributor.advisorJensen, Stig Rune
dc.contributor.authorBjørgve, Magnar
dc.date.accessioned2017-03-22T13:47:27Z
dc.date.available2017-03-22T13:47:27Z
dc.date.issued2017-02-15
dc.description.abstractFor high accuracy applications of integral operators in higher dimensions the complexity of operation and storage usually grows exponentially with dimensions. One method that has proven successful for handling these difficulties are the separation of the integral kernels as linear combinations of products of one-dimensional kernels, commonly referred to as separation of variables. In this thesis we optimize the existing separable forms of the Poisson and complex Helmholtz kernels used in the program package MRCPP. We then find a new separable representation of the (non-complex) Helmholtz kernel.en_US
dc.identifier.urihttps://hdl.handle.net/10037/10840
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2017 The Author(s)
dc.subject.courseIDMAT-3900
dc.subjectmathematicsen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.titleSeparable representations of the Poisson, Helmholtz and complex Helmholtz kernelsen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record