Show simple item record

dc.contributor.advisorPrasolov, Andrei V.
dc.contributor.authorBakke, Tørris Koløen
dc.date.accessioned2007-07-03T10:38:07Z
dc.date.available2007-07-03T10:38:07Z
dc.date.issued2007-06-14
dc.description.abstractIn this thesis we study the correspondence between categorical notions and bialgebra notions, and make a kind of dictionary and grammar book for translation between these notions. We will show how to obtain an antipode, and how to define braidings and quantizations. The construction is done in two ways. First we use the properties of a bialgebra to define a monoidal structure on (co)modules over this bialgebra. Then we go from a (strict) monoidal category and use a certain monoidal functor from this category to reconstruct bialgebra and (co)module structures. We will show that these constructions in a sense are inverse to each other. In some cases the correspondence is 1-1, and in the final Part we conjecture when this is the case for the category of comodules that are finitely generated and projective over the base ring k. We also briefly discuss how to transfer the results to non-strict categories.en
dc.format.extent547349 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10037/1084
dc.identifier.urnURN:NBN:no-uit_munin_796
dc.language.isoengen
dc.publisherUniversitetet i Tromsøen
dc.publisherUniversity of Tromsøen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2007 The Author(s)
dc.subjectVDP::Matematikk og naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414en
dc.subjectcoalgebraen
dc.subjectcomoduleen
dc.subjectbialgebraen
dc.subjectHopf algebraen
dc.subjectmonoidal categoryen
dc.subjectrigid categoryen
dc.subjectbraidingen
dc.subjectquantizationen
dc.subjectquasialgebraen
dc.subjectquasibialgebraen
dc.subjectcoquasibialgebraen
dc.subjectcobraideren
dc.subjectcoquantizeren
dc.subjectbraided categoryen
dc.titleHopf algebras and monoidal categoriesen
dc.typeMaster thesisen
dc.typeMastergradsoppgaveen


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record