Show simple item record

dc.contributor.authorKalybay, Aigerim
dc.contributor.authorPersson, Lars Erik
dc.contributor.authorTemirkhanova, Ainur
dc.date.accessioned2017-04-05T10:30:19Z
dc.date.available2017-04-05T10:30:19Z
dc.date.issued2015-10-06
dc.description.abstractA new discrete Hardy-type inequality with kernels and monotone functions is proved for the case 1<q<p<∞1<q<p<∞. This result is discussed in a general framework and some applications related to Hölder’s summation method are pointed out.en_US
dc.descriptionLink to publishers version: 10.1186/s13660-015-0843-9en_US
dc.identifier.citationKalybay, Persson LE, Temirkhanova. A new discrete Hardy-type inequality with kernels and monotone functions. Journal of Inequalities and Applications. 2015;2015:321en_US
dc.identifier.cristinIDFRIDAID 1293884
dc.identifier.doi10.1186/s13660-015-0843-9
dc.identifier.issn1025-5834
dc.identifier.issn1029-242X
dc.identifier.urihttps://hdl.handle.net/10037/10927
dc.language.isoengen_US
dc.publisherSpringerOpenen_US
dc.relation.journalJournal of Inequalities and Applications
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400en_US
dc.titleA new discrete Hardy-type inequality with kernels and monotone functionsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelno


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record