dc.contributor.author | Kalybay, Aigerim | |
dc.contributor.author | Persson, Lars Erik | |
dc.contributor.author | Temirkhanova, Ainur | |
dc.date.accessioned | 2017-04-05T10:30:19Z | |
dc.date.available | 2017-04-05T10:30:19Z | |
dc.date.issued | 2015-10-06 | |
dc.description.abstract | A new discrete Hardy-type inequality with kernels and monotone functions is proved for the case 1<q<p<∞1<q<p<∞. This result is discussed in a general framework and some applications related to Hölder’s summation method are pointed out. | en_US |
dc.description | Link to publishers version: 10.1186/s13660-015-0843-9 | en_US |
dc.identifier.citation | Kalybay, Persson LE, Temirkhanova. A new discrete Hardy-type inequality with kernels and monotone functions. Journal of Inequalities and Applications. 2015;2015:321 | en_US |
dc.identifier.cristinID | FRIDAID 1293884 | |
dc.identifier.doi | 10.1186/s13660-015-0843-9 | |
dc.identifier.issn | 1025-5834 | |
dc.identifier.issn | 1029-242X | |
dc.identifier.uri | https://hdl.handle.net/10037/10927 | |
dc.language.iso | eng | en_US |
dc.publisher | SpringerOpen | en_US |
dc.relation.journal | Journal of Inequalities and Applications | |
dc.rights.accessRights | openAccess | en_US |
dc.subject | VDP::Mathematics and natural science: 400 | en_US |
dc.title | A new discrete Hardy-type inequality with kernels and monotone functions | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | no |