ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural insight into a CE15 esterase from the marine bacterial metagenome

Permanent link
https://hdl.handle.net/10037/12439
DOI
https://doi.org/10.1038/s41598-017-17677-4
Thumbnail
View/Open
article.pdf (2.831Mb)
(PDF)
Date
2017-12-08
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
De Santi, Concetta; Gani, Osman A. B. S. M.; Helland, Ronny; Williamson, Adele Kim
Abstract
The family 15 carbohydrate esterase (CE15) MZ0003, which derives from a marine Arctic metagenome, has a broader substrate scope than other members of this family. Here we report the crystal structure of MZ0003, which reveals that residues comprising the catalytic triad differ from previously-characterized fungal homologs, and resolves three large loop regions that are unique to this bacterial sub-clade. The catalytic triad of the bacterial CE15, which includes Asp 332 as its third member, closely resembles that of family 1 carbohydrate esterases (CE1), despite the overall lower structural similarity with members of this family. Two of the three loop regions form a subdomain that deepens the active site pocket and includes several basic residues that contribute to the high positive charge surrounding the active site. Docking simulations predict specific interactions with the sugar moiety of glucuronic-acid substrates, and with aromatically-substituted derivatives that serve as model compounds for the lignin-carbohydrate complex of plant cell walls. Molecular dynamics simulations indicate considerable flexibility of the sub-domain in the substrate-bound form, suggesting plasticity to accommodate different substrates is possible. The findings from this first reported structure of a bacterial member of the CE15 family provide insight into the basis of its broader substrate specificity.
Description
Source at http://dx.doi.org/10.1038/s41598-017-17677-4 .
Publisher
Nature Publishing Group
Citation
De Santi, C., Gani, O. A., Helland, R., Williamson, A. K. (2017) Structural insight into a CE15 esterase from the marine bacterial metagenome. Scientific Reports. 7:17278:1-10
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)