ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • Vis innførsel
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Bedside Falls using Current Context

Permanent lenke
https://hdl.handle.net/10037/12713
DOI
https://doi.org/10.1109/SSCI.2017.8280988
Thumbnail
Åpne
2017ad_IEEE_Predicting_manus.pdf (407.4Kb)
Accepted manuscript, PDF (PDF)
Dato
2018-02-05
Type
Peer reviewed
Chapter
Bokkapittel

Forfatter
Danielsen, Asbjørn; Bremdal, Bernt Arild
Sammendrag
Each year about a third of the elderly aged 65 or older experience a fall. Many of these falls could be avoided if fall risk assessment and prevention tools where available in the daily living situation. Such tools would need to use the current context as input to predict an imminent fall. This paper presents an approach predicting imminent falls using data from a roof-mounted infrared array combined with an ultrasonic sensor. The data are processed and features extracted to determine location and posture along with indicators representing movement, direction, and velocity. These features are used by a classification algorithm to create a probability matrix representing the conditional probability of an individual in the current frame being recognized in a specific location and posture. A sequence of these probability matrices are fed into four artificial intelligence constructs trained to predict the probability of a future location/posture. The resulting conditional probability is used as a fall risk indicator to predict falls. Finally, the results from the experiment are presented. The study concludes that Elman Recurrent Neural Network with adapted Teacher Forcing has very promising properties and an explanation of the findings is offered.
Beskrivelse
Embargoed OA due to IEEE regulations (manuscript version after 24 mnths embargo from publication date) Link to publisher's version: http://doi.org/10.1109/SSCI.2017.8280988
Forlag
Institute of Electrical and Electronics Engineers (IEEE)
Sitering
Danielsen, A;Bremdal, B.A. Predicting Bedside Falls using Current Context. In: 2017 Symposium Series on Computational Intelligence. IEEE conference proceedings, p. 680-688
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring