Show simple item record

dc.contributor.authorKruglikov, Boris
dc.contributor.authorWinther, Henrik
dc.contributor.authorZalabová, Lenka
dc.date.accessioned2018-06-29T07:28:30Z
dc.date.available2018-06-29T07:28:30Z
dc.date.issued2017-11-10
dc.description.abstractThe symmetry dimension of a geometric structure is the dimension of its symmetry algebra. We investigate symmetries of almost quaternionic structures of quaternionic dimension <i>n</i>. The maximal possible symmetry is realized by the quaternionic projective space H<i>P<sup> n</sup></i>, which is flat and has the symmetry algebra sl(<i>n</i> + 1, H) of dimension 4<i>n</i><sup> 2</sup> + 8<i>n</i> + 3. For non-flat almost quaternionic manifolds we compute the next biggest (submaximal) symmetry dimension. We show that it is equal to 4<i>n</i><sup> 2</sup>−4<i>n</i>+9 for <i>n</i> > 1 (it is equal to 8 for <i>n</i> = 1). This is realized both by a quaternionic structure (torsion–free) and by an almost quaternionic structure with vanishing quaternionic Weyl curvature.en_US
dc.descriptionThis is a post-peer-review, pre-copyedit version of an article published in Transformation groups. The final authenticated version is available online at: <a href=http://dx.doi.org/10.1007/s00031-017-9453-6> http://dx.doi.org/10.1007/s00031-017-9453-6</a>.en_US
dc.identifier.citationKruglikov, B., Winther, H. & Zalabová, L. (2017). Submaximally symmetric almost quaternionic structures. Transformation groups, 1-19.en_US
dc.identifier.cristinIDFRIDAID 1542986
dc.identifier.doi10.1007/s00031-017-9453-6
dc.identifier.issn1083-4362
dc.identifier.urihttps://hdl.handle.net/10037/13051
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.journalTransformation groups
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US
dc.titleSubmaximally symmetric almost quaternionic structuresen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record