Vis enkel innførsel

dc.contributor.authorRue, Håvard
dc.contributor.authorRiebler, Andrea Ingeborg
dc.contributor.authorSørbye, Sigrunn Holbek
dc.contributor.authorIllian, Janine B.
dc.contributor.authorSimpson, Daniel Peter
dc.contributor.authorLindgren, Finn Kristian
dc.date.accessioned2018-08-09T06:27:52Z
dc.date.available2018-08-09T06:27:52Z
dc.date.issued2016-12-23
dc.description.abstractThe key operation in Bayesian inference is to compute high-dimensional integrals. An old approximate technique is the Laplace method or approximation, which dates back to Pierre-Simon Laplace (1774). This simple idea approximates the integrand with a second-order Taylor expansion around the mode and computes the integral analytically. By developing a nested version of this classical idea, combined with modern numerical techniques for sparse matrices, we obtain the approach of integrated nested Laplace approximations (INLA) to do approximate Bayesian inference for latent Gaussian models (LGMs). LGMs represent an important model abstraction for Bayesian inference and include a large proportion of the statistical models used today. In this review, we discuss the reasons for the success of the INLA approach, the R-INLA package, why it is so accurate, why the approximations are very quick to compute, and why LGMs make such a useful concept for Bayesian computing.en_US
dc.descriptionSubmitted manuscript version. Published version available at: <a href=https://doi.org/10.1146/annurev-statistics-060116-054045> https://doi.org/10.1146/annurev-statistics-060116-054045. </a>en_US
dc.identifier.citationRue, H., Riebler, A. I., Sørbye, S. H., Illian, J. B., Simpson, D. P. & Lindgren, F. K. (2017). Bayesian Computing with INLA: A Review. Annual Review of Statistics and Its Application, 4, 395-421. https://doi.org/10.1146/annurev-statistics-060116-054045en_US
dc.identifier.cristinIDFRIDAID 1458251
dc.identifier.doi10.1146/annurev-statistics-060116-054045
dc.identifier.issn2326-8298
dc.identifier.issn2326-831X
dc.identifier.urihttps://hdl.handle.net/10037/13371
dc.language.isoengen_US
dc.publisherAnnual Reviewsen_US
dc.relation.journalAnnual Review of Statistics and Its Application
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FRINATEK/240873/Norway/Penalised Complexity-priors: A new tool to define default priors and robustify Bayesian models//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en_US
dc.titleBayesian Computing with INLA: A Reviewen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel