Vis enkel innførsel

dc.contributor.authorMyhre, Jonas Nordhaug
dc.contributor.authorMikalsen, Karl Øyvind
dc.contributor.authorLøkse, Sigurd
dc.contributor.authorJenssen, Robert
dc.date.accessioned2018-09-10T14:38:11Z
dc.date.available2018-09-10T14:38:11Z
dc.date.issued2017-12-02
dc.description.abstractIn this paper we present a new algorithm for parameter-free clustering by mode seeking. Mode seeking, especially in the form of the mean shift algorithm, is a widely used strategy for clustering data, but at the same time prone to poor performance if the parameters are not chosen correctly. We propose to form a <i>clustering ensemble</i> consisting of repeated and bootstrapped runs of the recent kNN mode seeking algorithm, an algorithm which is faster than ordinary mean shift and more suited for high dimensional data. This creates a robust mode seeking clustering algorithm with respect to the choice of parameters and high dimensional input spaces, while at the same inheriting all other strengths of mode seeking in general. We demonstrate promising results on a number of synthetic and real data sets.en_US
dc.descriptionAccepted manuscript version. Published version available at <a href=https://doi.org/10.1016/j.patcog.2017.11.023> https://doi.org/10.1016/j.patcog.2017.11.023</a>. Accepted manuscript version, licensed <a href=http://creativecommons.org/licenses/by-nc-nd/4.0/> CC BY-NC-ND 4.0.</a>en_US
dc.identifier.citationMyhre, J.N., Mikalsen, K.Ø., Løkse, S. & Jenssen, R. (2017). Robust clustering using a kNN mode seeking ensemble. Pattern Recognition, 76, 491-505. https://doi.org/10.1016/j.patcog.2017.11.023en_US
dc.identifier.cristinIDFRIDAID 1536415
dc.identifier.doihttps://doi.org/10.1016/j.patcog.2017.11.023
dc.identifier.issn0031-3203
dc.identifier.issn1873-5142
dc.identifier.urihttps://hdl.handle.net/10037/13743
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalPattern Recognition
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/IKTPLUSS/239844/Norway/Next Generation Kernel-Based Machine Learning for Big Missing Data Applied to Earth Observation//en_US
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0031320317304776
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Matematikk og naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US
dc.subjectVDP::Mathematics and natural scienses: 400::Mathematics: 410::Statistics: 412en_US
dc.subjectDensity based clusteringen_US
dc.subjectConsensus clusteringen_US
dc.subjectkNN mode seekingen_US
dc.subjectMean shiften_US
dc.subjectEnsemble clusteringen_US
dc.titleRobust clustering using a kNN mode seeking ensembleen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel