Show simple item record

dc.contributor.advisorKruglikov, Boris
dc.contributor.authorHøyem, Marte Rørvik
dc.date.accessioned2008-04-10T12:41:05Z
dc.date.available2008-04-10T12:41:05Z
dc.date.issued2008-02-15
dc.description.abstractIn this thises we consider the Lie algebra that corresponds to the Lie pseudogroup of all conformal transformations on the plane. This conformal Lie algebra is canonically represented as a Lie algebra of vector fields on R^2. We will find all possible representations of vector fields in R^3=J^0R^2 which projects to the canonical representation and find the algebra of scalar differential invariants for each these representations of the conformal Lie algebra in J^0R^2.en
dc.format.extent398269 bytes
dc.format.extent2072 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.identifier.urihttps://hdl.handle.net/10037/1394
dc.identifier.urnURN:NBN:no-uit_munin_1176
dc.language.isoengen
dc.publisherUniversitetet i Tromsøen
dc.publisherUniversity of Tromsøen
dc.rights.accessRightsopenAccess
dc.rights.holderCopyright 2008 The Author(s)
dc.subject.courseIDMAT-3900nor
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415en
dc.titleDifferential invariants of the 2D conformal Lie algebra actionen
dc.typeMaster thesisen
dc.typeMastergradsoppgaveen


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record