Vis enkel innførsel

dc.contributor.authorWoywod, Clemens
dc.contributor.authorRoy, Susmita
dc.contributor.authorMaiti, Kiran
dc.contributor.authorRuud, Kenneth
dc.date.accessioned2018-12-19T10:48:52Z
dc.date.available2018-12-19T10:48:52Z
dc.date.issued2018-09-27
dc.description.abstract<p>The mapping of an electronic state on a real-space support lattice may offer advantages over a basis set ansatz in cases where there are linear dependences due to basis set overcompleteness or when strong internal or external fields are present. Such discretization methods are also of interest because they allow for the convenient numerical integration of matrix elements of local operators. We have developed a pseudo-spectral approach to the numerical solution of the time-dependent and time-independent Schrödinger equations describing electronic motion in atoms and atomic ions in terms of a spherical coordinate system. A key feature of this scheme is the construction of a <i>Variational Basis Representation</i> (VBR) for the non-local component and of a <i>Generalized Finite Basis Representation</i> (GFBR) for the local component of the electronic Hamiltonian operator. Radial Hamiltonian eigenfunctions <i><math><mrow is="true"><msub is="true"><mrow is="true"><mi is="true">χ</mi></mrow><mrow is="true"><mi mathvariant="italic" is="true">nl</mi><mtext is="true">;</mtext><mi is="true">β</mi></mrow></msub><mrow is="true"><mfenced open="(" close=")" is="true"><mrow is="true"><mi is="true">(r)</mi></mrow></mfenced></mrow></mrow></math></i> of the H atom-like system and spherical harmonics form the basis set. Two special cases of this approach are explored: In one case, the functions of the field-free H atom are used as the elements of the basis set, and in the second case, each radial basis function has been obtained by variationally optimizing a shielding parameter β to yield a minimum energy for a particular eigenstate of the H atom in a uniform magnetic field.</p> <p>We derive a new quadrature rule of nearly Gaussian accuracy for the computation of matrix elements of local operators between radial basis functions and perform numerical evaluation of local operator matrix elements involving spherical harmonics. With this combination of radial and angular quadrature prescriptions we ensure to a good approximation the discrete orthogonality of Hamiltonian eigenfunctions of H atom-like systems for summation over the grid points. We further show that sets of <i><math><mrow is="true"><msub is="true"><mrow is="true"><mi is="true">χ</mi></mrow><mrow is="true"><mi mathvariant="italic" is="true">nl</mi><mtext is="true">;</mtext><mi is="true">β</mi></mrow></msub><mrow is="true"><mfenced open="(" close=")" is="true"><mrow is="true"><mi is="true">(r)</mi></mrow></mfenced></mrow></mrow></math></i> functions are linearly independent, whereas sets of the polar-angle-dependent components of the spherical harmonics, i.e., the associated Legendre functions, are not and provide a physical interpretation of this mathematical observation.</p> <p>The pseudo-spectral approach presented here is applied to two model systems: the field-free H atom and the H atom in a uniform magnetic field. The results demonstrate the potential of this method for the description of challenging systems such as highly charged atomic ions.</p>en_US
dc.description.sponsorshipTromsø Research Foundation NOTUR Leibniz Supercomputing Centre in München.en_US
dc.descriptionAccepted manuscript version. Published version available at <a href=https://doi.org/10.1016/j.chemphys.2018.09.025> https://doi.org/10.1016/j.chemphys.2018.09.025</a>. Licensed <a href=http://creativecommons.org/licenses/by-nc-nd/4.0/> CC BY-NC-ND 4.0.</a>en_US
dc.identifier.citationWoywod, C., Roy, S., Maiti, K. & Ruud, K. (2018). An efficient pseudo-spectral method for the description of atomic electronic wave functions – Application to the hydrogen atom in a uniform magnetic field. <i>Chemical Physics</i>, 515, 299-314. https://doi.org/10.1016/j.chemphys.2018.09.025en_US
dc.identifier.cristinIDFRIDAID 1623243
dc.identifier.doi10.1016/j.chemphys.2018.09.025
dc.identifier.issn0301-0104
dc.identifier.issn1873-4421
dc.identifier.urihttps://hdl.handle.net/10037/14369
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalChemical Physics
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FRINAT/177558/Norway/Vibronic contributions to higher-order molecular properties//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Chemistry: 440en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Kjemi: 440en_US
dc.titleAn efficient pseudo-spectral method for the description of atomic electronic wave functions – Application to the hydrogen atom in a uniform magnetic fielden_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel