ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon–Carbon Bond Formation

Permanent lenke
https://hdl.handle.net/10037/14465
DOI
https://doi.org/10.1021/acs.organomet.7b00899
Thumbnail
Åpne
article.pdf (507.0Kb)
Accepted manuscript version (PDF)
Dato
2018-03-12
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Pavlovic, Ljiljana; Vaitla, Janakiram; Bayer, Annette; Hopmann, Kathrin Helen
Sammendrag
The mechanism of rhodium-COD-catalyzed hydrocarboxylation of styrene derivatives and α,β-unsaturated carbonyl compounds with CO2 has been investigated using density functional theory (PBE-D2/IEFPCM). The calculations support a catalytic cycle as originally proposed by Mikami and co-workers including β-hydride elimination, insertion of the unsaturated substrate into a rhodium–hydride bond, and subsequent carboxylation with CO2. The CO2 insertion step is found to be rate limiting. The calculations reveal two interesting aspects. First, during C–CO2 bond formation, the CO2 molecule interacts with neither the rhodium complex nor the organozinc additive. This appears to be in contrast to other CO2 insertion reactions, where CO2–metal interactions have been predicted. Second, the substrates show an unusual coordination mode during CO2 insertion, with the nucleophilic carbon positioned up to 3.6 Å away from rhodium. In order to understand the experimentally observed substrate preferences, we have analyzed a set of five alkenes: an α,β-unsaturated ester, an α,β-unsaturated amide, styrene, and two styrene derivatives. The computational results and additional experiments reported here indicate that the lack of activity with amides is caused by an overly high barrier for CO2 insertion and is not due to catalyst inactivation. Our experimental studies also reveal two putative side reactions, involving oxidative cleavage or dimerization of the alkene substrate. In the presence of CO2, these alternative reaction pathways are suppressed. The overall insights may be relevant for the design of future hydrocarboxylation catalysts.
Beskrivelse
Accepted manuscript version of the following article: Pavlovic, L., Vaitla, J., Bayer, A. & Hopmann, K.H. (2018). Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon–Carbon Bond Formation. Organometallics, 37(6), 941-948. Published version available at https://doi.org/10.1021/acs.organomet.7b00899.
Er en del av
Pavlovic, L. (2020). Towards Enantioselective Carboxylation and Hydrogenation Reactions (Quantum Chemical Modelling of Homogeneous Reactions). (Doctoral thesis). https://hdl.handle.net/10037/18943.
Forlag
American Chemical Society
Sitering
Pavlovic, L., Vaitla, J., Bayer, A. & Hopmann, K.H. (2018). Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon–Carbon Bond Formation. Organometallics, 37(6), 941-948. https://doi.org/10.1021/acs.organomet.7b00899
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (kjemi) [565]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring