dc.contributor.author | Friedl, Tobias | |
dc.contributor.author | Riener, Cordian | |
dc.contributor.author | Sanyal, Raman | |
dc.date.accessioned | 2019-03-19T22:49:47Z | |
dc.date.available | 2019-03-19T22:49:47Z | |
dc.date.issued | 2017-10-18 | |
dc.description.abstract | Let <i>X</i> be a nonempty real variety that is invariant under the action of a reflection group <i>G</i>. We conjecture that if <i>X</i> is defined in terms of the first <i>k</i> basic invariants of <i>G</i> (ordered by degree), then <i>X</i> meets a <i>k</i>-dimensional flat of the associated reflection arrangement. We prove this conjecture for the infinite types, reflection groups of rank at most <i>3</i>, and <i>F<sub>4</sub></i> and we give computational evidence for <i>H<sub>4</sub></i>. This is a generalization of Timofte's degree principle to reflection groups. For general reflection groups, we compute nontrivial upper bounds on the minimal dimension of flats of the reflection arrangement meeting <i>X</i> from the combinatorics of parabolic subgroups. We also give generalizations to real varieties invariant under Lie groups. | en_US |
dc.description.sponsorship | DFG-Collaborative Research Center
Dahlem Research School at the Freie Universität Berlin. | en_US |
dc.description | Source at <a href=https://doi.org/10.1090/proc/13821>https://doi.org/10.1090/proc/13821</a>. | en_US |
dc.identifier.citation | Friedl, T., Riener, C. & Sanyal, R. (2018). Reflection groups, arrangements, and invariant real varieties. <i>Proceedings of the American Mathematical Society, 146</i>(3), 1031-1045. https://doi.org/10.1090/proc/13821 | en_US |
dc.identifier.cristinID | FRIDAID 1573461 | |
dc.identifier.doi | 10.1090/proc/13821 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.uri | https://hdl.handle.net/10037/15030 | |
dc.language.iso | eng | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.relation.journal | Proceedings of the American Mathematical Society | |
dc.rights.accessRights | openAccess | en_US |
dc.subject | reflection groups | en_US |
dc.subject | reflection arrangements | en_US |
dc.subject | invariant real varieties | en_US |
dc.subject | real orbit spaces | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414 | en_US |
dc.title | Reflection groups, arrangements, and invariant real varieties | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |