Vis enkel innførsel

dc.contributor.authorKruglikov, Boris
dc.contributor.authorSchneider, Eivind
dc.date.accessioned2019-03-25T12:29:26Z
dc.date.available2019-03-25T12:29:26Z
dc.date.issued2018-05-22
dc.description.abstractEinstein–Weyl structures on a three-dimensional manifold <i>M</i> are given by a system <i>E</i> of PDEs on sections of a bundle over <i>M</i>. This system is invariant under the Lie pseudogroup <i>G</i> of local diffeomorphisms on <i>M</i>. Two Einstein–Weyl structures are locally equivalent if there exists a local diffeomorphism taking one to the other. Our goal is to describe the quotient equation <i>E/G</i> whose solutions correspond to nonequivalent Einstein–Weyl structures. The approach uses symmetries of the Manakov–Santini integrable system and the action of the corresponding Lie pseudogroup.en_US
dc.descriptionSource at <a href=https://doi.org/10.1016/j.geomphys.2018.05.011>https://doi.org/10.1016/j.geomphys.2018.05.011</a>.en_US
dc.identifier.citationKruglikov, B.S. & Schneider, E. (2018). Differential invariants of Einstein-Weyl structures in 3D. <i>Journal of Geometry and Physics, 131</i>, 160-169. https://doi.org/10.1016/j.geomphys.2018.05.011en_US
dc.identifier.cristinIDFRIDAID 1625186
dc.identifier.doi10.1016/j.geomphys.2018.05.011
dc.identifier.issn0393-0440
dc.identifier.issn1879-1662
dc.identifier.urihttps://hdl.handle.net/10037/15058
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofSchneider, E. (2019). Differential invariants of Lie pseudogroups. (Doctoral thesis). <a href=https://hdl.handle.net/10037/15600>https://hdl.handle.net/10037/15600</a>.
dc.relation.journalJournal of Geometry and Physics
dc.relation.urihttps://arxiv.org/abs/1802.00702
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Algebra/algebraisk analyse: 414en_US
dc.subjectManakov–Santini equationen_US
dc.subjectEquivalence pseudogroupen_US
dc.subjectHilbert polynomialen_US
dc.subjectPoincaré functionen_US
dc.subjectLax pairen_US
dc.titleDifferential invariants of Einstein-Weyl structures in 3Den_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel